Lecture 1 - BDM_MATHSV Bases on Sets theory and Enumeration

Claire Brécheteau Centrale Nantes, Nantes Université, Laboratoire de Mathématiques Jean Leray

2025-2026

- 6 lectures
- 6 tutorial sessions
- EVC (0.3) quiz during lectures
- EVI (0.7) final examination: 5th November 2025 (S1 or S2?)

Course content available on Hippocampus https://hippocampus.ec-nantes.fr/course/view.php?id=2883

Timetable

CM	TD BBA	TD BSC
16/09 S1	16/09 S2	17/09 S1
23/09 S1	23/09 S2	24/09 S1
30/09 S1	30/09 S2	01/10 S1
07/10 S1	07/10 S2	08/10 S1
14/10 S1	14/10 S2	15/10 S1
22/10 S1	21/10 S1	15/10 S2

- Not yet on Onboard
- CM after TD

3 / 29

Course Outline

- 1. Bases on Sets theory and Enumeration
- 2. Introduction to probabilities: from events to random variables
- 3. Discrete and continuous random variables
- 4. Convergence of random variables and Limit theorems
- 5. Estimators in Statistics and Confidence intervals
- 6. Statistical tests

Lecture Outline

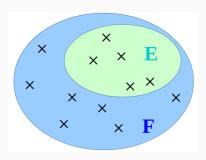
- 1. Empty set, complementary set
- 2. Operations on sets: union, intersection, product; De Morgan's law...
- 3. Subsets, partition
- 4. Cardinality, Addition rule
- 5. Enumeration: permutation, partial permutation, p-list, combination
- 6. Binomial coefficient: Pascal's triangle, Newton's binomial formula

A set E is a collection of distinct elements. \blacksquare Examples:

- $E = \{\} = \emptyset$.
- $E = \{0, 1\}.$
- $E = \{a, e, i, o, u, y\}.$
- $E = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$.
- $E = \{0, 1, 2, 3, \ldots\} = \mathbb{N}.$
- $E = \mathbb{R}$.
- E = {points inside the circle with center O and radius 1}.

A set E is included in a set F if all elements of E are also in F:

$$E \subset F \iff \forall x \in E, x \in F.$$



Two sets E and F are equal if they contain the same elements:

$$E = F \iff E \subset F \text{ and } F \subset E.$$

This is called double inclusion.

■ Examples :

- $\{0,1\} = \{1,0\}.$
- $\mathbb{N} \subset \mathbb{Z}$ but $\mathbb{N} \neq \mathbb{Z}$ because $\mathbb{Z} \not\subset \mathbb{N}$.
- $\blacksquare \quad \{\bullet, \bullet\} \subset \{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\}.$
- As soon as E has one or more elements, $\varnothing \subset E$ but $E \not\subset \varnothing$.

Claire Brécheteau Lecture 1 - BDM_MATHSV 8 / 29

The cardinality of a set E is the number of elements it contains.

Examples :

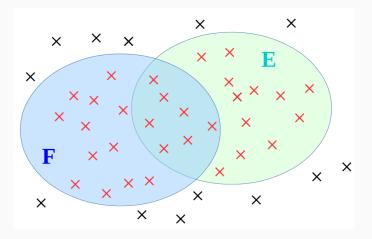
- $E = \varnothing$: Card(E) = 0.
- $E = \{0, 1\}$: Card(E) = 2.
- $E = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$: Card(E) = 6.
- $E = \mathbb{N}$: Card $(E) = +\infty$.
- E = [0; 1]: Card $(E) = +\infty$.
- Special cases: singleton $\{x\}$, pair $\{x,y\}$, triplet $\{x,y,z\}$.

The union of two sets E and F consists of elements belonging to either E or F:

$$x \in E \cup F \iff x \in E \text{ or } x \in F.$$

- **■** Examples :
 - $\{0\} \cup \{1\} = \{0,1\}.$
 - $\bullet \ \{i,o,y\} \cup \{e,i,y\} = \{e,i,o,y\}.$
 - $[0;1] \cup [\frac{1}{2};\frac{3}{2}] = [0;\frac{3}{2}].$
 - $\bullet \quad \{\bullet, \bullet, \bullet, \bullet\} \cup \{\bullet, \bullet, \bullet\} = \{\bullet, \bullet, \bullet, \bullet, \bullet\}.$

$E \cup F$



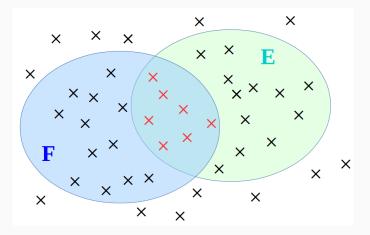
The intersection of two sets E and F consists of elements belonging to both E and F:

$$x \in E \cap F \iff x \in E \text{ and } x \in F.$$

■ Examples :

- $\{0\} \cap \{1\} = \emptyset$.
- $\{0,1\} \cap \{1\} = \{1\}.$
- $\{i, o, y\} \cap \{e, i, y\} = \{i, y\}.$
- $[0;1] \cap [\frac{1}{2};\frac{3}{2}] = [\frac{1}{2};1].$
- $\bullet \quad \{\bullet, \bullet, \bullet, \bullet\} \cap \{\bullet, \bullet, \bullet\} = \{\bullet, \bullet\}.$

$E \cap F$



Union and Intersection of multiple sets

Given m sets $A_1, A_2, \ldots A_m$:

- their union is $\bigcup_{i=1}^m A_i = A_1 \cup \ldots \cup A_m = \{x \in \Omega \mid \exists j \in \{1, \ldots, m\}, x \in A_i\},\$
- their intersection is $\bigcap_{i=1}^m A_i = A_1 \cap \ldots \cap A_m = \{x \in \Omega \mid \forall j \in \{1, \ldots, m\}, x \in A_i\}.$

The symbol \exists means it exists and \forall means for all.

The complement of a set E consists of elements not belonging to this set:

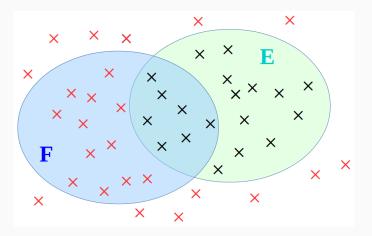
$$x \in \bar{E} \iff x \notin E$$
.

The difference between F and E contains the elements of F that do not belong to E:

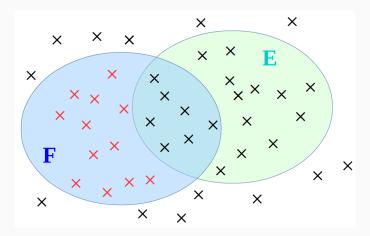
$$x \in F \setminus E \iff x \in F \text{ but } x \notin E.$$

Examples :

- In $\{0,1\}$, $\overline{\{0\}} = \{1\}$.
- In $\{a, e, i, o, u, y\}$, $\overline{\{e, o, u, y\}} = \{a, i\}$.
- $[0;1]\setminus [\frac{1}{4};\frac{3}{4}] = [0;\frac{1}{4}) \cup (\frac{3}{4};1].$
- $\bullet \quad \{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\} \setminus \{\bullet, \bullet\} = \{\bullet, \bullet, \bullet, \bullet\}.$



$F \setminus E$



Some useful relations: For every sets A, B and C:

- Commutativity: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associativity: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
- Idempotence: $A \cap A = A$, $A \cup A = A$
- Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Double negation: $\overline{(\overline{A})} = A$
- Excluded third: $A \cup \overline{A} = \Omega$, $A \cap \overline{A} = \emptyset$
- Absorption: $A \cup \Omega = \Omega$, $A \cup (A \cap B) = A$, $A \cap \emptyset = \emptyset$, $A \cap (A \cup B) = A$
- Neutral element: $A \cup \emptyset = A$, $A \cap \Omega = A$
- De Morgan's law: $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$, $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

For practice: highlight these formulas in diagrams.

Claire Brécheteau Lecture 1 - BDM_MATHSV 18 / 29

Product set

The product $A \times B$ of two sets A and B is the set of pairs of two elements with the first one in A and the second one in B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Product set

The product $A \times B$ of two sets A and B is the set of pairs of two elements with the first one in A and the second one in B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

The product $A_1 \times \ldots \times A_n$ of n sets $A_1, \ldots A_n$ is the set of tuples which i-th coordinate is in A_i for every $i \in \{1, \ldots, n\}$:

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i, \forall i \in \{1, \ldots, n\}\}.$$

When $A_1 = A_2 = \ldots = A_n$, the product $A_1 \times \ldots \times A_n$ is denoted by A^n .

Example of products of sets

Example:

- The outcomes of the experiment of rolling 2 dice successively are in the set $\Omega = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\} = \{1,2,3,4,5,6\}^2$. The subset of outcomes "The first die gives an odd number" is: $A = \{1,3,5\} \times \{1,2,3,4,5,6\}$. Examples of elements in A are: (1,2), (1,1), (5,6), etc.
- $\{1,2\} \times \{3\} = \{(1,3),(2,3)\}$
- $\{1,2\} \times \{2,3\} = \{(1,2),(1,3),(2,2),(2,3)\}$
- $\{1,2\} \times \emptyset = \emptyset$
- $\{3\} \times \{1,2\} = \{(3,1),(3,2)\} \neq \{1,2\} \times \{3\}.$

20 / 29

Partition

A partition $\{A_1, \ldots, A_m\}$ of a set Ω is a family of m sets satisfying:

- The sets are disjoint and nonempty: $\forall i,j \in \{1,\ldots,m\}$, $A_i \cap A_j = \emptyset$,
- The sets cover Ω : $\bigcup_{j=1}^{m} A_j = \Omega$.

Partition

A partition $\{A_1, \ldots, A_m\}$ of a set Ω is a family of m sets satisfying:

- The sets are disjoint and nonempty: $\forall i,j \in \{1,\ldots,m\}$, $A_i \cap A_j = \emptyset$,
- The sets cover Ω : $\bigcup_{j=1}^{m} A_j = \Omega$.

Examples :

- $\{A, \overline{A}\}$ is a partition of Ω , provided that $A \neq \emptyset$ and $A \neq \Omega$.
- If A and B are two distinct sets and so that $A \neq \overline{B}$, different from \emptyset and Ω , then $\{A \cap B, A \cap \overline{B}, \overline{A} \cap B, \overline{A} \cap \overline{B}\}$ is a partition of Ω .

Claire Brécheteau Lecture 1 - BDM_MATHSV

Particular partition

- If A_1, A_2, \ldots, A_m are mutually disjoint, then $Card(A_1 \cup \ldots \cup A_m) = Card(A_1) + \ldots + Card(A_m)$.
- If $A_1, A_2, ..., A_m$ is a partition of Ω , then $Card(\Omega) = Card(A_1) + ... + Card(A_m)$.

Particular partition

- If A_1, A_2, \ldots, A_m are mutually disjoint, then $Card(A_1 \cup \ldots \cup A_m) = Card(A_1) + \ldots + Card(A_m)$.
- If $A_1, A_2, ..., A_m$ is a partition of Ω , then $Card(\Omega) = Card(A_1) + ... + Card(A_m)$.

Example: In a class of 23 students, we consider the following sets: A the set of students that practice sport, B the set of students that wear glasses. If 9 students with glasses and 5 students without glasses practice sport, 6 boys without glasses do not practice sport, then the number of students with glasses who practice sport is:

$$Card(\overline{A} \cap B) = Card(\Omega) - Card(A \cap B) - Card(A \cap \overline{B}) - Card(\overline{A} \cap \overline{B})$$

= $23 - 9 - 5 - 6$

since $\{A \cap B, \overline{A} \cap B, A \cap \overline{B}, \overline{A} \cap \overline{B}\}$ is a partition of Ω .

Doing enumeration or combinatorics means knowing how to count the possible outcomes of an experiment.

Examples:

- There are 2 outcomes for a coin toss.
- There are 37 outcomes for a roulette spin.
- There are 120 anagrams of the word TABLE.
- There are 10,000 different PIN codes.
- There are 201,376 hands of 5 cards in a 32-card deck.
- There are 24,165,120 ordered hands of 5 cards in the same deck.

How many different PIN codes are there?

There are $10 \times 10 \times 10 \times 10 = 10^4$. How many different PIN codes are

there with distinct digits?

There are $10 \times 9 \times 8 \times 7 = 5040$.

A p-list (x_1, \ldots, x_p) is a tuple of p elements in a set Ω of n elements. That is, an element of Ω^p .

The cardinality of Ω^p , the set of p-lists in Ω , is $Card(\Omega^p) = n^p$, if $Card(\Omega) = n$.

Examples :

- A phone number in France is +33 followed by 9 numbers in $\{0,1,\ldots,9\}$. It can be seens as a 9-list of $\Omega=\{0,1,\ldots,9\}$. Thus, the number of phone numbers is $Card(\{0,1,\ldots,9\}^9)=10^9=1000000000$.
- There are $2^5 = 32$ possible results for tossing 5 coins successively. For instance, (H, H, T, H, T) is one of them.

The number of arrangements of p elements chosen from n elements represents the number of ordered lists of size p that can be constructed from the n elements. We have:

If p = n, we speak of permutations. There are n! for a set of n elements. Example : TABLE, TABLE, TALBE, ..., ELBAT. 5! = 120 in total.

Anagrams

If n elements can be divided into c classes of alike elements, differing from class to class, then the number of permutations of these elements taken all at a time is

$$\frac{n!}{n_1! n_2! \dots n_c!}$$

(with $n = n_1 + n_2 + ... + n_c$ and n_j is the number of elements in the j-th class).

Example: There are 5! anagrams of the word "maths", $\frac{11!}{2!\times 2!\times 2!}$ of the word "mathematics" (2 "a", 2 "m", 2 "t") and $\frac{6!}{2!\times 3!}$ of "baobab" (2 "a", 3 "b").

Combinations

What if we do not consider order? The number of combinations of p elements chosen from n elements represents the number of sets of p elements that can be constructed from the n elements. We have:

$$C_n^p = {n \choose p} = \frac{n!}{p!(n-p)!} = \frac{A_n^p}{p!}.$$

Indeed, there are A_n^p ordered lists of p elements. If we do not consider order, the p! permutations of these p elements are indistinguishable.

For practice: compute the number of hands of 5 cards drawn from a 32-card deck.

Properties for the binomial coefficient

The binomial coefficient $\binom{n}{p}$ satisfies the following properties:

- Symmetry: $\forall p \in \{0, 1, \dots, n\}, \binom{n}{p} = \binom{n}{n-p}$.
- Pascal's Triangle: $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$
- Newton's binomial formula:

$$\forall n \in \mathbb{N}, \forall a, b \geq 0, (a+b)^n = \sum_{p=0}^n \binom{n}{p} a^p b^{n-p}.$$

Claire Brécheteau