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• 6 lectures
• 6 tutorial sessions
• EVC (0.3) quiz during lectures
• EVI (0.7) final examination: 5th November 2025 (S1 or S2 ?)

Course content available on Hippocampus
https://hippocampus.ec-nantes.fr/course/view.php?id=2883
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Timetable

CM TD BBA TD BSC
16/09 S1 16/09 S2 17/09 S1
23/09 S1 23/09 S2 24/09 S1
30/09 S1 30/09 S2 01/10 S1
07/10 S1 07/10 S2 08/10 S1
14/10 S1 14/10 S2 15/10 S1
22/10 S1 21/10 S1 15/10 S2

• Not yet on Onboard
• CM after TD

Claire Brécheteau Lecture 1 - BDM_MATHSV 3 / 29



Course Outline

1. Bases on Sets theory and Enumeration
2. Introduction to probabilities : from events to random variables
3. Discrete and continuous random variables
4. Convergence of random variables and Limit theorems
5. Estimators in Statistics and Confidence intervals
6. Statistical tests
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Lecture Outline

1. Empty set, complementary set
2. Operations on sets: union, intersection, product; De Morgan’s law...
3. Subsets, partition
4. Cardinality, Addition rule
5. Enumeration: permutation, partial permutation, p-list, combination
6. Binomial coefficient: Pascal’s triangle, Newton’s binomial formula
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Review of Sets



Review of Sets

A set E is a collection of distinct elements. Z Examples :

• E = {} = ∅.
• E = {0, 1}.
• E = {a, e, i, o, u, y}.
• E = {•, •, •, •, •, •}.
• E = {0, 1, 2, 3, . . .} = N.
• E = R.
• E = {points inside the circle with center O and radius 1}.
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Review of Sets

A set E is included in a set F if all elements of E are also in F :

E ⊂ F ⇐⇒ ∀ x ∈ E , x ∈ F .
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Review of Sets

Two sets E and F are equal if they contain the same elements:

E = F ⇐⇒ E ⊂ F and F ⊂ E .

This is called double inclusion.

Z Examples :

• {0, 1} = {1, 0}.
• N ⊂ Z but N ̸= Z because Z ̸⊂ N.
• {•, •} ⊂ {•, •, •, •, •, •}.
• As soon as E has one or more elements, ∅ ⊂ E but E ̸⊂ ∅.
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Review of Sets

The cardinality of a set E is the number of elements it contains.

Z Examples :

• E = ∅: Card(E ) = 0.
• E = {0, 1}: Card(E ) = 2.
• E = {•, •, •, •, •, •}: Card(E ) = 6.
• E = N: Card(E ) = +∞.
• E = [0 ; 1]: Card(E ) = +∞.

Z Special cases: singleton {x}, pair {x , y}, triplet {x , y , z}.
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Review of Sets

The union of two sets E and F consists of elements belonging to either E
or F :

x ∈ E ∪ F ⇐⇒ x ∈ E or x ∈ F .

Z Examples :

• {0} ∪ {1} = {0, 1}.
• {i, o, y} ∪ {e, i, y} = {e, i, o, y}.
• [0 ; 1] ∪ [ 1

2 ; 3
2 ] = [0 ; 3

2 ].
• {•, •, •, •} ∪ {•, •, •} = {•, •, •, •, •}.
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Review of Sets

E ∪ F
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Review of Sets

The intersection of two sets E and F consists of elements belonging to
both E and F :

x ∈ E ∩ F ⇐⇒ x ∈ E and x ∈ F .

Z Examples :

• {0} ∩ {1} = ∅.
• {0, 1} ∩ {1} = {1}.
• {i, o, y} ∩ {e, i, y} = {i, y}.
• [0 ; 1] ∩ [ 1

2 ; 3
2 ] = [ 1

2 ; 1].
• {•, •, •, •} ∩ {•, •, •} = {•, •}.
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Review of Sets

E ∩ F
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Union and Intersection of multiple sets

Given m sets A1, A2, . . . Am:

• their union is⋃m
j=1 Aj = A1 ∪ . . . ∪ Am = {x ∈ Ω | ∃j ∈ {1, . . . , m}, x ∈ Aj},

• their intersection is⋂m
j=1 Aj = A1 ∩ . . . ∩ Am = {x ∈ Ω | ∀j ∈ {1, . . . , m}, x ∈ Aj}.

The symbol ∃ means it exists and ∀ means for all.
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Review of Sets

The complement of a set E consists of elements not belonging to this set:

x ∈ Ē ⇐⇒ x /∈ E .

The difference between F and E contains the elements of F that do not
belong to E :

x ∈ F\E ⇐⇒ x ∈ F but x /∈ E .

Z Examples :

• In {0, 1}, {0} = {1}.
• In {a, e, i, o, u, y}, {e, o, u, y} = {a, i}.
• [0 ; 1]\[ 1

4 ; 3
4 ] = [0 ; 1

4 ) ∪ ( 3
4 ; 1].

• {•, •, •, •, •, •}\{•, •} = {•, •, •, •}.
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Review of Sets

Ē
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Review of Sets

F\E
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Review of Sets

Z Some useful relations: For every sets A, B and C :

• Commutativity: A ∪ B = B ∪ A, A ∩ B = B ∩ A
• Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C , A ∩ (B ∩ C) = (A ∩ B) ∩ C
• Idempotence: A ∩ A = A, A ∪ A = A
• Distributivity: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
• Double negation: (A) = A
• Excluded third: A ∪ A = Ω, A ∩ A = ∅
• Absorption: A ∪ Ω = Ω, A ∪ (A ∩ B) = A, A ∩ ∅ = ∅, A ∩ (A ∪ B) = A
• Neutral element: A ∪ ∅ = A, A ∩ Ω = A
• De Morgan’s law: (A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

Z For practice: highlight these formulas in diagrams.
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Product set

The product A × B of two sets A and B is the set of pairs of two elements
with the first one in A and the second one in B:

A × B = {(a, b) | a ∈ A, b ∈ B}.

The product A1 × . . . × An of n sets A1, . . . An is the set of tuples which
i-th coordinate is in Ai for every i ∈ {1, . . . , n}:

A1 × . . . × An = {(a1, . . . , an) | ai ∈ Ai , ∀i ∈ {1, . . . , n}}.

When A1 = A2 = . . . = An, the product A1 × . . . × An is denoted by An.
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Example of products of sets

Z Example :

• The outcomes of the experiment of rolling 2 dice successively are in
the set Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}2.
The subset of outcomes "The first die gives an odd number" is:
A = {1, 3, 5} × {1, 2, 3, 4, 5, 6}. Examples of elements in A are:
(1, 2), (1, 1), (5, 6), etc.

• {1, 2} × {3} = {(1, 3), (2, 3)}
• {1, 2} × {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}
• {1, 2} × ∅ = ∅
• {3} × {1, 2} = {(3, 1), (3, 2)} ≠ {1, 2} × {3}.
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Partition

A partition {A1, . . . , Am} of a set Ω is a family of m sets satisfying:

• The sets are disjoint and nonempty: ∀i , j ∈ {1, . . . , m}, Ai ∩ Aj = ∅,
• The sets cover Ω:

⋃m
j=1 Aj = Ω.

Z Examples :

• {A, A} is a partition of Ω, provided that A ̸= ∅ and A ̸= Ω.
• If A and B are two distinct sets and so that A ̸= B, different from ∅

and Ω, then {A ∩ B, A ∩ B, A ∩ B, A ∩ B} is a partition of Ω.
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Particular partition

• If A1, A2, . . . , Am are mutually disjoint, then
Card(A1 ∪ . . . ∪ Am) = Card(A1) + . . . + Card(Am).

• If A1, A2, . . . , Am is a partition of Ω, then
Card(Ω) = Card(A1) + . . . + Card(Am).

Z Example : In a class of 23 students, we consider the following sets: A
the set of students that practice sport, B the set of students that wear
glasses. If 9 students with glasses and 5 students without glasses practice
sport, 6 boys without glasses do not practice sport, then the number of
students with glasses who practice sport is:

Card(A ∩ B) = Card(Ω) − Card(A ∩ B) − Card(A ∩ B) − Card(A ∩ B)
= 23 − 9 − 5 − 6

since {A ∩ B, A ∩ B, A ∩ B, A ∩ B} is a partition of Ω.
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A Bit of Combinatorics



A Bit of Combinatorics

Doing enumeration or combinatorics means knowing how to count the
possible outcomes of an experiment. Z Examples :

• There are 2 outcomes for a coin toss.
• There are 37 outcomes for a roulette spin.
• There are 120 anagrams of the word TABLE.
• There are 10,000 different PIN codes.
• There are 201,376 hands of 5 cards in a 32-card deck.
• There are 24,165,120 ordered hands of 5 cards in the same deck.
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A Bit of Combinatorics

How many different PIN codes are there?

Z There are 10 × 10 × 10 × 10 = 104. How many different PIN codes are

there with distinct digits?

Z There are 10 × 9 × 8 × 7 = 5040.
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p-lists

A p-list (x1, . . . , xp) is a tuple of p elements in a set Ω of n elements.
That is, an element of Ωp.

The cardinality of Ωp, the set of p-lists in Ω, is Card(Ωp) = np, if
Card(Ω) = n.

Z Examples :

• A phone number in France is +33 followed by 9 numbers in
{0, 1, . . . , 9}. It can be seens as a 9-list of Ω = {0, 1, . . . , 9}. Thus,
the number of phone numbers is
Card({0, 1, . . . , 9}9) = 109 = 1000000000.

• There are 25 = 32 possible results for tossing 5 coins successively. For
instance, (H, H, T , H, T ) is one of them.
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A Bit of Combinatorics

The number of arrangements of p elements chosen from n elements
represents the number of ordered lists of size p that can be constructed
from the n elements. We have:

Ap
n = n × (n − 1) × . . . × (n − p + 1) = n !

(n − p) ! .

If p = n, we speak of permutations. There are n ! for a set of n elements.
Z Example : TABLE, TABEL, TALBE, ..., ELBAT. 5 ! = 120 in total.
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Anagrams

If n elements can be divided into c classes of alike elements, differing from
class to class, then the number of permutations of these elements taken all
at a time is

n!
n1!n2! . . . nc !

(with n = n1 + n2 + . . . + nc and nj is the number of elements in the j-th
class).

Z Example : There are 5! anagrams of the word "maths", 11!
2!×2!×2! of the

word "mathematics" (2 "a", 2 "m", 2 "t") and 6!
2!×3! of "baobab" (2 "a", 3

"b").
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Combinations

What if we do not consider order? The number of combinations of p
elements chosen from n elements represents the number of sets of p
elements that can be constructed from the n elements. We have:

Cp
n =

(
n
p

)
= n !

p ! (n − p) ! = Ap
n

p ! .

Indeed, there are Ap
n ordered lists of p elements. If we do not consider

order, the p ! permutations of these p elements are indistinguishable.

Z For practice: compute the number of hands of 5 cards drawn from a
32-card deck.
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Properties for the binomial coefficient

The binomial coefficient
(n

p
)

satisfies the following properties:

• Symmetry: ∀p ∈ {0, 1, . . . , n},
(n

p
)

=
( n

n−p
)
.

• Pascal’s Triangle:
(n

p
)

+
( n

p+1
)

=
(n+1

p+1
)

• Newton’s binomial formula:
∀n ∈ N, ∀a, b ≥ 0, (a + b)n =

∑n
p=0

(n
p
)
apbn−p.
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