Towards a robust vision of geometric inference

Claire Brécheteau

Université Paris-Sud 11, Laboratoire de Mathématiques d'Orsay and Inria Select Team – Inria Saclay, Data Shape Team

Under the supervision of Pascal Massart (Université Paris-Sud 11) and Frédéric Chazal (Inria Saclay)

September 24, 2018

Towards a robust vision of GEOMETRIC INFERENCE

Geometric Inference: Recover geometric information from a point cloud sampled around some shape.

Towards a robust vision of GEOMETRIC INFERENCE

Geometric Inference: Recover geometric information from a point cloud sampled around some shape.

Global setting:

- (\mathcal{X}, δ) , metric space
- ullet P, probability distribution supported on ${\mathscr X}$

That is, (\mathcal{X}, δ, P) is a metric-measure space.

- Q, probability distribution (close to P somehow)
- $X_n = \{X_1, X_2, ..., X_n\}$, *n*-sample from Q

Robustness:

Output
Robustness to outliers or Trimming:

Getting rid of a proportion $1-\eta$ of the probability (resp. of the data-points).

Robustness:

Outliers of Trimming:

Getting rid of a proportion $1-\eta$ of the probability (resp. of the data-points).

$$t^*_{\eta} \in \arg\min_t \inf_{\eta \tilde{P} \leq P} \tilde{P} \gamma(t,.)$$

Robustness:

Robustness to outliers or Trimming :

Getting rid of a proportion $1-\eta$ of the probability (resp. of the data-points).

$$t_{\eta}^* \in \arg\min_{t} \inf_{\eta \tilde{P} \leq P} \tilde{P} \gamma(t,.)$$

 P_{η} such that :

$$\inf_{\eta \tilde{P} \leq P} \tilde{P} \gamma(t_{\eta}^*,.) = P_{\eta} \gamma(t_{\eta}^*,.)$$

Robustness:

Robustness to outliers or Trimming:

Getting rid of a proportion $1-\eta$ of the probability (resp. of the data-points).

$$t_{\eta}^* \in \arg\min_{t} \inf_{\eta \tilde{P} \leq P} \tilde{P} \gamma(t,.)$$

 P_n such that :

$$\inf_{\eta \tilde{P} \leq P} \tilde{P} \gamma(t_{\eta}^*,.) = P_{\eta} \gamma(t_{\eta}^*,.)$$

② Stability (e.g. according to a Wasserstein metric W_p). Small $W_p(P,Q) \leadsto \text{Roughly the same geometric information in } P \text{ and } Q.$

Towards an IMPLEMENTABLE robust vision of geometric inference

Main questions

• How to compare two datasets?

Main questions

• How to compare two datasets?

• How to make clusters from a dataset?

Main questions

• How to compare two datasets?

• How to make clusters from a dataset?

• How to infer the distance to a compact set, with a fixed budget?

A multifunction tool : the distance-to-measure function

A definition for the DTM

$$\delta_{P,h}(x) = \inf \left\{ r > 0 \ | \ P\left(\overline{\mathbb{B}}(x,r)\right) > h \right\}$$

A definition for the DTM

$$\delta_{P,h}(x) = \inf \left\{ r > 0 \mid P\left(\overline{\mathbf{B}}(x,r)\right) > h \right\}$$

The distance-to-measure (DTM) [Chazal, Cohen-Steiner, Mérigot 09'] is defined for all $x \in \mathcal{X}$ and $h \in [0,1]$ by :

$$d_{P,h}(x) = \frac{1}{h} \int_0^h \delta_{P,l}(x) dl$$

A definition for the DTM

$$\delta_{P,h}(x) = \inf \left\{ r > 0 \ | \ P\left(\overline{\mathbf{B}}(x,r)\right) > h \right\}$$

The distance-to-measure (DTM) [Chazal, Cohen-Steiner, Mérigot 09'] is defined for all $x \in \mathcal{X}$ and $h \in [0,1]$ by :

$$\mathbf{d}_{P,h}^{(p)}(x) = \left(\frac{1}{h} \int_0^h \delta_{P,l}^p(x) \, \mathrm{d}l\right)^{\frac{1}{p}}$$

The DTM for Stable – Geometric Inference

- When h = 0, $d_{P,0} = d_{\mathscr{X}}$.

The DTM for Stable – Geometric Inference

- When h = 0, $d_{P,0} = d_{\mathscr{X}}$.

Distance to ${\mathscr X}$

Distance to X_n

DTM with h = 0.2

The DTM contains information

Theorem (Brécheteau)

 P_O (uniform distribution on O) can be recovered from $\mathbf{d}_{P_O,h}$ provided that h is small enough and O regular enough.

The DTM contains information

Theorem (Brécheteau)

 P_O (uniform distribution on O) can be recovered from $\mathrm{d}_{P_O,h}$ provided that h is small enough and O regular enough.

Theorem (Brécheteau)

P can be recovered from $(d_{P,h})_{h \in [0,1]}$ provided that $(\mathcal{X}, \delta) = (\mathbb{R}^d, \|\cdot\|)$.

The DTM, an implementable tool

- \bullet $\kappa = nh$
- **2** Empirical distribution $P_n = \sum_{i=1}^n \frac{1}{n} \delta_{X_i}$

The DTM, an implementable tool

- \bullet $\kappa = nh$
- **②** Empirical distribution $P_n = \sum_{i=1}^n \frac{1}{n} \delta_{X_i}$
- $lackbox{0}\ X^{(1)},\ X^{(2)},\dots X^{(\kappa)}: \kappa$ nearest neighbours of x in \mathbb{X}_n

$$d_{P_n,h}(x) = \frac{1}{\kappa} \sum_{i=1}^{\kappa} \delta\left(X^{(i)}, x\right)$$

 \rightarrow Easy implementation of the DTM at a point x in practice!

The DTM, an implementable tool

- \bullet $\kappa = nh$
- **2** Empirical distribution $P_n = \sum_{i=1}^n \frac{1}{n} \delta_{X_i}$
- $lacksquare{3} X^{(1)}, X^{(2)}, \dots X^{(\kappa)} : \kappa$ nearest neighbours of x in \mathbb{X}_n

$$d_{P_n,h}^{(p)}(x) = \left(\frac{1}{\kappa} \sum_{i=1}^{\kappa} \delta^p \left(X^{(i)}, x\right)\right)^{\frac{1}{p}}$$

 \rightsquigarrow Easy implementation of the DTM at a point x in practice!

1) A statistical test of isomorphism between mm-spaces

A statistical test of isomorphism between mm-spaces

Two mm-spaces (\mathcal{X}, δ, P) and $(\mathcal{Y}, \delta', P')$ are isomorphic [Gromov 81'] if : $\exists \phi : \mathcal{X} \mapsto \mathcal{Y}$ a one-to-one isometry, s.t. for all Borel set A, $P'(\phi(A)) = P(A)$.

A statistical test of isomorphism between mm-spaces

Two mm-spaces (\mathcal{X}, δ, P) and $(\mathcal{Y}, \delta', P')$ are isomorphic [Gromov 81'] if : $\exists \phi : \mathcal{X} \mapsto \mathcal{Y}$ a one-to-one isometry, s.t. for all Borel set A, $P'(\phi(A)) = P(A)$.

How to build a test of level $\alpha > 0$ to test the null hypothesis

$$H_0$$
: " (\mathcal{X}, δ, P) and $(\mathcal{Y}, \delta', P')$ are isomorphic"?

٧S

$$H_1$$
: " (\mathcal{X}, δ, P) and $(\mathcal{Y}, \delta', P')$ are not isomorphic"?

 $(\mathcal{Y}, \delta', P')$

From the Gromov-Wasserstein distance to the DTM-signature

The Gromov-Wasserstein distance [Mémoli 10'] GW is a metric such that $GW((\mathcal{X}, \delta, P), (\mathcal{Y}, \delta', P')) = 0$ iff the mm-spaces are isomorphic. \bigwedge Too high computational cost.

Definition

The DTM-signature, $d_{P,h}(P)$ is the distribution of $d_{P,h}(X)$ when $X \sim P$.

Theorem (Brécheteau)

$$W_1\left(\mathrm{d}_{P,h}(P)\,,\mathrm{d}_{P',h}\left(P'\right)\right) \leq \frac{1}{h}GW\left(\mathcal{X},\mathcal{Y}\right)$$

Bootstrap approximation

Definition

Defined by $\mathrm{d}_{P_N,h}(P_n)$ with P_N from (X_1,X_2,\ldots,X_N) and P_n from (X_1,X_2,\ldots,X_n) .

Statistic:

$$T = \sqrt{n}W_1\left(d_{P_N,h}(P_n), d_{P'_N,h}(P'_n)\right)$$

Subsampling distribution:

$$\mathcal{L}^{*}\left(P\right) = \mathcal{L}^{*}\left(\sqrt{n}W_{1}\left(\mathbf{d}_{P_{N},h}\left(P_{n}^{*}\right),\mathbf{d}_{P_{N},h}\left(P_{n}^{*'}\right)\right)|P_{N}\right)$$

Under hypothesis H_0 , $\mathcal{L}(T)$ is approximated with $\mathcal{L}^* = \frac{1}{2}\mathcal{L}^*(P) + \frac{1}{2}\mathcal{L}^*(P')$.

Bootstrap approximation

Definition

Defined by $\mathrm{d}_{P_N,h}(P_n)$ with P_N from (X_1,X_2,\ldots,X_N) and P_n from (X_1,X_2,\ldots,X_n) .

Statistic:

$$T = \sqrt{n}W_1\left(d_{P_N,h}(P_n), d_{P'_N,h}(P'_n)\right)$$

Subsampling distribution:

$$\mathcal{L}^{*}\left(P\right)=\mathcal{L}^{*}\left(\sqrt{n}W_{1}\left(\mathsf{d}_{P_{N},h}\left(P_{n}^{*}\right),\mathsf{d}_{P_{N},h}\left(P_{n}^{*'}\right)\right)|P_{N}\right)$$

Under hypothesis H_0 , $\mathscr{L}(T)$ is approximated with $\mathscr{L}^* = \frac{1}{2}\mathscr{L}^*(P) + \frac{1}{2}\mathscr{L}^*(P')$.

Cdf of
$$\mathcal{L}(T)$$
 and $\mathcal{L}^*(P)$ (Bunny) $N = 10000$, $n = 100$, $h = 0.1$

The error of type I

Test:

$$\phi_{N,n,h} = \mathbb{1}_{T \ge \hat{q}_{\alpha,N,n,h}}$$

with $\hat{\mathbf{q}}_{\alpha,N,n,h}$, the α -quantile of \mathcal{L}^* .

Theorem (Brécheteau)

If P is supported on compact subsets of \mathbb{R}^d ; $\mathscr{L}(\|\mathbb{G}_{P,h}-\mathbb{G}'_{P,h}\|_1)$ is atomless; $n\sim N^{\frac{1}{\rho}}$:

- in the general case, if $\rho > \frac{\max\{d,2\}}{2}$,
- in the (a,b)-standard case, if $\rho > 1$,

then $\mathbb{P}_{(P,P)}(\phi_{N,n,h}) \to \alpha$, when $N \to \infty$.

 $\mathbb{G}_{P,h} \text{ and } \mathbb{G}'_{P,h} \text{ independent Gaussian processes with covariance kernel}$ $\kappa(s,t) = F_{\mathrm{d}_{P,h}(P)}(s) \Big(1 - F_{\mathrm{d}_{P,h}(P)}(t)\Big) \text{ for } s \leq t.$

The error of type II

 $n \sim N^{\frac{1}{\rho}}$ with $\rho > 1$ \mathscr{X} , \mathscr{Y} : compact subsets of \mathbb{R}^d .

Theorem (Brécheteau)

There is $n_{P,P'}$ such that $\forall n \geq n_{P,P'}$,

$$\mathbb{P}_{(P,P')}\left(1-\phi_{N,n,h}\right) \leq 4\exp\left(-\frac{W_1^2\left(\mathrm{d}_{P,h}(P),\mathrm{d}_{P',h}(P')\right)}{3\max\left\{\mathrm{Diam}_{P'}^2,\mathrm{Diam}_{P'}^2\right\}}n\right)$$

Experiments

$$N = 2000 \text{ points}$$
; $\alpha = 0.05$, $h = 0.05$, $n = 20$.

Comparison to the spiral with shape parameter 10 (grey).

spiral shape parameter	15	20	30	40	100
type I error DTM	0.050	0.049	0.051	0.044	0.051
type II error DTM	0.475	0.116	0.013	0.023	0.015
type II error KS	0.232	0.598	0.535	0.586	0.578

Type I and type II error approximations

2) Bregman trimmed clustering

The DTM, a tool for trimming

 $P_{x,h}$: restriction of P to the ball of P-mass h

$$\begin{aligned} \mathbf{d}_{P,h}^2(x) &= P_{x,h} \|. - x\|^2 \\ &= \inf_{h\tilde{P} \leq P} \tilde{P} \gamma(x,.) \end{aligned}$$

with $\gamma(x,.) = ||.-x||^2$.

For the DTM : $1 - h \leftrightarrow 1 - \eta$

$$d_{P,\eta}^2: x \mapsto \inf_{\eta \tilde{P} \le P} \tilde{P} \|.-x\|^2$$

Minimizer x^* : Trimmed barycenter

The DTM a tool for Trimming k-means

codebook
$$\mathbf{c} = (c_1, c_2, ..., c_k)$$

$$\gamma(\mathbf{c}, .) = \min_{j \in 1...k} \|. - c_j\|^2$$

$$B(x, r) \leftrightarrow \bigcup_{i \in 1...k} B(c_i, r).$$

The DTM a tool for Trimming k-means

codebook
$$\mathbf{c} = (c_1, c_2, ..., c_k)$$

$$\gamma(\mathbf{c}, .) = \min_{j \in 1...k} \|. - c_j\|^2$$

$$B(x, r) \leftrightarrow \bigcup_{i \in 1...k} B(c_i, r).$$

$$\mathrm{d}_{P,\eta}^2:\mathbf{c}\mapsto \inf\nolimits_{\eta\tilde{P}\leq P}\tilde{P}\min\nolimits_{j\in 1..k}\|.-c_j\|^2$$

Minimizer \mathbf{c}^* : Optimal codebook for Trimmed k-means [Cuesta et al. 97']

An example of trimmed clustering with a Bregman divergence

 $\Omega \subset \mathbb{R}^d$ convex set, $\phi: \Omega \to \mathbb{R}$ strictly convex and \mathscr{C}^1 . Bregman divergence $\mathbf{d}_\phi: (x,y) \mapsto \phi(x) - \phi(y) - \langle \nabla_y \phi, x-y \rangle, \, \forall \, x,y \in \Omega$

An example of trimmed clustering with a Bregman divergence

 $\Omega \subset \mathbb{R}^d$ convex set, $\phi: \Omega \to \mathbb{R}$ strictly convex and \mathscr{C}^1 . Bregman divergence

$$\mathbf{d}_{\phi}:(x,y)\mapsto\phi(x)-\phi(y)-\langle\nabla_{y}\phi,x-y\rangle,\,\forall\,x,y\in\Omega$$

Poisson distribution:

$$-\log(p_{\theta}(x)) = -\log\left(\frac{\theta^{x}}{x!}e^{-\theta}\right)$$
$$= d_{\phi}(x, \theta) + C(x),$$

for
$$\phi(x) = x \log(x) - x$$
,
and $d_{\phi}(x, c) = x \log(\frac{x}{c}) - (x - c)$.

Bregman trimmed clustering

Definition

Bregman $\mathit{h}\text{-trimmed}$ variation given c - or - Bregman-divergence-to-measure :

$$\operatorname{d}^2_{\phi,P,\eta}(\mathbf{c}) = \inf_{\eta \tilde{P} \leq P} \tilde{P} \min_{j \in I..k} \operatorname{d}_{\phi}(.,c_j)$$

Definition

A Bregman h-trimmed k-optimal codebook \mathbf{c}^* is any minimizer \mathbf{c} of the criterion $\mathrm{d}_{\phi,P,\eta}(\mathbf{c})$.

Theorem (Brécheteau, Fischer and Levrard)

Assume that ϕ is \mathscr{C}^2 and strictly convex and $F_0 = \overline{\operatorname{Conv}(\operatorname{Supp}(P))} \subset \overset{o}{\Omega}$. Then, the minimum \mathbf{c}^* exists.

Some theory

 $\hat{\mathbf{c}}_n$: minimizer of $\mathrm{d}_{\phi,P_n,\eta}$.

Theorem (Brécheteau, Fischer and Levrard)

If P is continuous, $P\|.\|^p < \infty$ for some p > 2, ϕ is \mathscr{C}_2 on Ω , $F_0 = \overline{\mathrm{Conv}(\mathrm{Supp}(P))} \subset \Omega^\circ$ and \mathbf{c}^* is the unique minimizer of $\mathrm{d}_{\phi,P,\eta}$, then :

$$\lim_{n\to+\infty} \operatorname{dist}(\hat{\mathbf{c}}_n,\mathbf{c}^*) = 0 \ a.e.$$

and

$$\lim_{n\to+\infty} d_{\phi,P,\eta}(\hat{\mathbf{c}}_n) = d_{\phi,P,\eta}(\mathbf{c}^*) \text{ a.e.}$$

This convergence holds at a parametric rate $\frac{1}{\sqrt{n}}$:

Theorem (Brécheteau, Fischer and Levrard)

Assume that $P\|.\|^p < \infty$. Then, for n large enough, with probability greater than $1-n^{-\frac{p}{2}}-2e^{-x}$, we have

$$d_{\phi,P,\eta}(\hat{\mathbf{c}}_n) - d_{\phi,P,\eta}(\mathbf{c}^*) \le \frac{C_P}{\eta\sqrt{n}}(1+\sqrt{x}).$$

Clustering associated to the selected parameter η - dimension 2

3) Distance to a compact set inference, with a quantization point of view

How to characterise a probability distribution at best with a fixed budget?

Given P, Q or \mathbb{X}_n :

Find ${f c}$ and ${m \omega}$ such that the k-power function

$$x \mapsto \min_{j \in 1..k} \|x - c_j\|^2 + \omega_j^2$$

is a good approximation of the square of the distance to \mathcal{X} ,

$$\mathbf{d}_{\mathscr{X}}^2: x \mapsto \min_{y \in \mathscr{X}} \|x - y\|^2$$

What about using (trimmed) k-means for quantization problem?

Trimmed k-means does not work...

The DTM, an alternative definition as a power distance when p=2 [Chazal, Cohen-Steiner, Mérigot 09']

$$\begin{split} \mathbf{d}_{P,h}^2(x) &= P_{x,h} \|.-x\|^2 \\ &= \inf_{h\tilde{P} \leq P} \tilde{P} \|.-x\|^2 \\ &= \|m(P_{x,h}) - x\|^2 + v(P_{x,h}) \\ &= \inf_{h\tilde{P} \leq P} \|m(\tilde{P}) - x\|^2 + v(\tilde{P}) \end{split}$$

Notation : Mean m(P), Variance v(P).

The DTM, an alternative definition as a power distance when p=2 [Chazal, Cohen-Steiner, Mérigot 09']

$$\begin{split} \mathbf{d}_{P,h}^2(x) &= P_{x,h} \|.-x\|^2 \\ &= \inf_{h\tilde{P} \leq P} \tilde{P} \|.-x\|^2 \\ &= \|m(P_{x,h}) - x\|^2 + v(P_{x,h}) \\ &= \inf_{h\tilde{P} \leq P} \|m(\tilde{P}) - x\|^2 + v(\tilde{P}) \end{split}$$

Notation : Mean m(P), Variance v(P).

 \rightsquigarrow Sublevel sets of the DTM : union of balls.

Approximation : κ -witnessed distance [Guibas Morozov Mérigot 11'] n balls

A measure-dependant Bregman divergence

Set $\phi_{P,h}$ the function defined on \mathbb{R}^d by

$$\phi_{P,h}: x \mapsto ||x||^2 - d_{P,h}^2(x).$$
 (1)

[Chazal, Cohen-Steiner, Mérigot 09'] The map $\phi_{P,h}$ is convex. The Bregman-divergence associate to $\phi_{P,h}$ satisfies for $x,t\in\mathbb{R}^d$:

$$\mathrm{d}_{\phi_{P,h}}(x,t) = \|x - m(P_{t,h})\|^2 + \nu(P_{t,h}) - \mathrm{d}_{P,h}^2(x)$$

$$\min_{j \in 1..k} d_{\phi_{P,h}}(.,t_j) = \left(\min_{j \in 1..k} \|x - m(P_{t,h})\|^2 + v(P_{t,h})\right) - d_{P,h}^2(x)$$

 \rightarrow Bregman clustering with $d_{\phi_{P,h}}$! Rq : Theory $1-\eta=0$ (For practice $1-\eta\in[0,1)$)!

Bregman clustering with $d_{\phi_{P,h}}$ or the k-PDTM

$$\begin{split} \mathbf{t}^* &\in \arg\min_{\mathbf{t}} P \min_{j \in 1..k} \mathrm{d}_{\phi_{P,h}}(.,t_j) \\ &= \arg\min_{\mathbf{t}} P \min_{j \in 1..k} \|.-m(P_{t_j,h})\|^2 + v(P_{t_j,h}) - \mathrm{d}_{P,h}^2(.) \end{split}$$

Definition

The k-power distance-to-measure (k-PDTM) $d_{P,h,k}$ is defined for $x \in \mathbb{R}^d$ by :

$$\mathrm{d}^2_{P,h,k}(x) = \min_{j \in I...k} \|x - m(P_{t_j^*,h})\|^2 + v(P_{t_j^*,h})$$

Graphical representation for the k-PDTM

$$\omega(c) = \inf \left\{ \omega > 0 \mid \forall x \in \mathbb{R}^d, \|x - c\|^2 + \omega^2 \ge d_{P,h}^2(x) \right\}$$

Theorem (Brécheteau and Levrard)

$$\mathrm{d}_{P,h,k}^2(x) = \min_{j \in 1..k} \|x - c_j^*\|^2 + \omega^2(c_j^*)$$

for

$$\mathbf{c}^* \in \arg\min \left\{ P \min_{j \in 1...k} \|.-c_j\|^2 + \omega^2(c_j) \right\}$$

k-PDTM, k = 2 centres

k-PDTM, k = 10 centres

Wasserstein stability for the k-PDTM

Proposition

If $\operatorname{Supp}(P) \subset \operatorname{B}(0,K)$, and $Q\|.\| < \infty$, then $P\left|\operatorname{d}_{Q,h,k}^2(.) - \operatorname{d}_{P,h}^2(.)\right|$ is bounded from above by

$$3\|\mathbf{d}_{Q,h}^2 - \mathbf{d}_{P,h}^2\|_{\infty,\mathrm{B}(0,K)} + P\Big(\mathbf{d}_{P,h,k}^2(.) - \mathbf{d}_{P,h}^2(.)\Big) + 4W_I(P,Q) \sup_{s \in \mathbb{R}^d} \|m(P_{s,h})\|$$

with $P\left(\mathbf{d}_{P,h,k}^2(.) - \mathbf{d}_{P,h}^2(.)\right)$ of order $k^{-\frac{2}{d'}}$ for a "d'-dimensional distribution".

Approximation of the k-PDTM from point clouds

$$\begin{split} & \operatorname{Supp}(P) = \mathscr{X} \subset \operatorname{B}(0,K) \\ & X_i = Y_i + Z_i, \ Y_i \ \text{and} \ Z_i \ \text{all independent,} \ Y_i \sim P, \ Z_i \ \text{sub-Gaussian with variance} \\ & \sigma^2 \leq K^2 \\ & Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}. \end{split}$$

Theorem (Brécheteau and Levrard)

For every p > 0, with probability larger than $1 - 10n^{-p}$, we have

$$\left|P\mathrm{d}_{Q_n,h,k}^2(.)-\mathrm{d}_{Q,h,k}^2(.)\right| \leq C\sqrt{kd}\frac{K^2((p+1)\log(n))^{\frac{3}{2}}}{h\sqrt{n}} + C\frac{K\sigma}{\sqrt{h}}.$$

Approximation of the k-PDTM from point clouds

$$\begin{split} & \operatorname{Supp}(P) = \mathscr{X} \subset \operatorname{B}(0,K) \\ & X_i = Y_i + Z_i, \ Y_i \ \text{and} \ Z_i \ \text{all independent,} \ Y_i \sim P, \ Z_i \ \text{sub-Gaussian with variance} \\ & \sigma^2 \leq K^2 \\ & Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}. \end{split}$$

Theorem (Brécheteau and Levrard)

For every p > 0, with probability larger than $1 - 10n^{-p}$, we have

$$\left|P\mathrm{d}_{Q_n,h,k}^2(.)-\mathrm{d}_{Q,h,k}^2(.)\right| \leq C\sqrt{kd}\frac{K^2((p+1)\log(n))^\frac{3}{2}}{h\sqrt{n}} + C\frac{K\sigma}{\sqrt{h}}.$$

 \leadsto optimize in k the quantity

$$\frac{C\sqrt{k}K^2((p+1)\log(n))^{\frac{3}{2}}}{h\sqrt{n}} + C_{P,h}k^{-\frac{2}{d'}}.$$

Approximation of the k-PDTM from point clouds

$$\begin{split} & \operatorname{Supp}(P) = \mathscr{X} \subset \operatorname{B}(0,K) \\ & X_i = Y_i + Z_i, \ Y_i \ \text{and} \ Z_i \ \text{all independent,} \ Y_i \sim P, \ Z_i \ \text{sub-Gaussian with variance} \\ & \sigma^2 \leq K^2 \\ & Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}. \end{split}$$

Theorem (Brécheteau and Levrard)

For every p > 0, with probability larger than $1 - 10n^{-p}$, we have

$$\left|P\mathrm{d}_{Q_n,h,k}^2(.)-\mathrm{d}_{Q,h,k}^2(.)\right| \leq C\sqrt{kd}\frac{K^2((p+1)\log(n))^{\frac{3}{2}}}{h\sqrt{n}} + C\frac{K\sigma}{\sqrt{h}}.$$

 \rightsquigarrow optimize in k the quantity

$$\frac{C\sqrt{k}K^2((p+1)\log(n))^{\frac{3}{2}}}{h\sqrt{n}} + C_{P,h}k^{-\frac{2}{d'}}.$$

Optimal choice $k \sim n^{\frac{d'}{d'+4}}$.

Geometric inference with the k-PDTM

Theorem (Brécheteau and Levrard)

$$\begin{array}{l} \textit{Assumption} : \forall x \in \mathcal{X}, \ P(\mathsf{B}(x,r)) \geq C(P)r^{d'} \land 1. \\ \textit{Set } \Delta_P^2 = P\mathsf{d}_{Q,h,k}^2(.), \ \textit{then}, \end{array}$$

$$\sup_{x \in \mathbb{R}^d} |\mathsf{d}_{Q,h,k}(x) - \mathsf{d}_{\mathcal{X}}(x)| \leq C(P)^{-\frac{1}{d'+2}} \Delta_P^{\frac{2}{d'+2}} + 2\Delta_P + W_2(P,Q)h^{-\frac{1}{2}}.$$

Numerical Illustrations

Trimmed k-PDTM $(\eta < 1)$

Summing up

Method	New tool
Isomorphism Test	DTM-signature $d_{P,h}(P)$
Bregman clustering	Bregman divergence-to-measure $\mathbf{c} \mapsto \mathrm{d}_{\boldsymbol{\phi},P,\eta}(\mathbf{c})$
Quantization & $\mathrm{d}_\mathscr{X}$ inference	$k\text{-PDTM } x \mapsto \mathrm{d}_{P,h,k}(x)$

Summing up

Method	New tool
Isomorphism Test	DTM-signature $d_{P,h}(P)$
Bregman clustering	Bregman divergence-to-measure $\mathbf{c} \mapsto \mathrm{d}_{\phi,P,\eta}(\mathbf{c})$
Quantization & $\mathrm{d}_\mathscr{X}$ inference	k -PDTM $x \mapsto d_{P,h,k}(x)$

Future work:

Non asymptotic statistics for studying

$$\hat{t}_{\eta} \in \arg\min_{t} \inf_{\eta \tilde{P_n} \leq P_n} \tilde{P_n} \gamma(t,.)$$

Thank you!

The DTM and the trimmed log-likelihood

$$\mathscr{F} = \{P_{\theta}\}_{\theta}$$
; P_{θ} with density p_{θ} .

$$\gamma(\theta, .) = -\log(p_{\theta}(.))$$

 $B(x, r) \leftrightarrow \text{upper-level set of } p_{\theta}.$

$$P_{\theta,\eta}^{\mathcal{F}}$$

$$\mathrm{d}_{P,\eta}^{\mathcal{F}}:\theta\mapsto\inf\nolimits_{\eta\tilde{P}\leq P}\tilde{P}-\log(p_{\theta}(.))$$

Minimizer θ^* : Trimmed log-likelihood maximizer

The DTM and the trimmed log-likelihood

$$\mathscr{F} = \{P_{\theta}\}_{\theta}$$
; P_{θ} with density p_{θ} .

$$\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$$

$$\gamma(\boldsymbol{\theta},.) = \min\nolimits_{j \in 1..k} - \log(p_{\theta_j}(.))$$

 $B(x,r) \leftrightarrow \text{union of upper-level set of the } p_{\theta_i} s.$

$$\mathrm{d}_{P,\eta}^{\mathcal{F}}:\pmb{\theta}\mapsto \mathrm{inf}_{\eta\tilde{P}\leq P}\tilde{P}\mathrm{min}_{j\in\mathcal{I}..k}-\log(p_{\theta_{j}}(.))$$

Minimizer $oldsymbol{ heta}^*$: Optimal codebook for some trimmed clustering...

Experiments

Robust heteroscedastic Gaussian clustering

