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Towards a robust vision of GEOMETRIC INFERENCE

Geometric Inference : Recover geometric information from a point cloud
sampled around some shape.
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Towards a robust vision of GEOMETRIC INFERENCE

Geometric Inference : Recover geometric information from a point cloud
sampled around some shape.

Global setting :
e (¥,0), metric space
@ P, probability distribution supported on &
That is, (%,68,P) is a metric-measure space.
@ Q, probability distribution (close to P somehow)
o X, ={X1,Xo,..., Xy}, n-sample from Q
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Towards a ROBUST vision of geometric inference

Robustness :

@ Robustness to outliers or Trimming :
v
|
/\_/-\/‘ \‘/\’\

Getting rid of a proportion of the probability (resp. of the data-points).
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Towards a ROBUST vision of geometric inference

Robustness :

@ Robustness to outliers or Trimming :

Aa

NV

Getting rid of a proportion of the probability (resp. of the data-points).

ty €argmin inf Py(t,.)
! pp<p
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Towards a ROBUST vision of geometric inference

Robustness :

@ Robustness to outliers or Trimming :

Aa

NV

Getting rid of a proportion of the probability (resp. of the data-points).

ty €argmin inf Py(t,.)
! pp<p

Py such that :

inf Py(t,)=Pny(t),)
nbP<pP Y i
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Towards a ROBUST vision of geometric inference

Robustness :

@ Robustness to outliers or Trimming :

Aa

NV

Getting rid of a proportion of the probability (resp. of the data-points).

ty €argmin inf Py(t,.)
! pp<p

Py such that :

inf Py(t,)=Pny(t),)
nbP<pP Y i

@ Stability (e.g. according to a Wasserstein metric Wp).
Small Wy (B Q) ~~ Roughly the same geometric information in P and Q.
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Towards an IMPLEMENTABLE robust vision of geometric inference
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@ How to compare two datasets ?
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@ How to compare two datasets ?

@ How to make clusters from a dataset ?
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Main questions

@ How to compare two datasets ?

@ How to make clusters from a dataset ?
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A multifunction tool : the

distance-to-measure function




A definition for the DTM

dpn(z)

Spn(0) =inf{r>0 | P(B(x,1)> h}
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A definition for the DTM

dpn(z)

Spn(0) =inf{r>0 | P(B(x,1)> h}

The distance-to-measure (DTM) [Chazal, Cohen-Steiner, Mérigot 09'] is defined
for all xe & and hel0,1] by :

1 rh
dp,h(x) = —[ 6p,l(x)dl
hJo
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A definition for the DTM

Spn(x) =inf{r>0 | P(Bx,n)>n}

The distance-to-measure (DTM) [Chazal, Cohen-Steiner, Mérigot 09'] is defined
for all xeZ and hel0,1] by :

® o (L ["ep
a0 =3 o eoat

T I~
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The DTM for Stable — Geometric Inference

@ When h=0, dpp=dgy.
1
@ [d)—dd | _=n7 Wy (RQIChazal, Cohen-Steiner, Mérigot 097,
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The DTM for Stable — Geometric Inference

@ When h=0, dpp=dgy.
1
@ [d)—dd | _=n7 Wy (RQIChazal, Cohen-Steiner, Mérigot 097,
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Distance to & Distance to X, DTM with h=0.2
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The DTM contains information

Theorem (Brécheteau)

P (uniform distribution on O) can be recovered from dp, p,
provided that h is small enough and O regular enough.
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The DTM contains information

Theorem (Brécheteau)

P (uniform distribution on O) can be recovered from dp, p,
provided that h is small enough and O regular enough.

Theorem (Brécheteau)

P can be recovered from (dp,p,) pe(o, 11
provided that (Z,6) = R4, |- ).
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The DTM, an implementable tool

Q x=nh
@ Empirical distribution P;, = Z?:l %6)(1.
9 xW, x@  x® .k nearest neighbours of x in X,
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The DTM, an implementable tool

Q x=nh
@ Empirical distribution P;, = Z?:l %6)(1.
9 xW, x@  x® .k nearest neighbours of x in X,

L5 s(x
dp,n(0 ==Y &(x?,x]
Ki=1

~~ Easy implementation of the DTM at a point x in practice!
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The DTM, an implementable tool

Q@ x=nh
@ Empirical distribution P, =Y 16
Q xW, x@  x® .« nearest neighbours of x in X,

i

1
p

d(l’) — 1§ 5P X(D
P = 2 (x7.x)
~~ Easy implementation of the DTM at a point x in practice!
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1) A statistical test of isomorphism between

mm-spaces
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A statistical test of isomorphism between mm-spaces

Two mm-spaces (Z,8,P) and (%,6', P') are isomorphic [Gromov 81] if :
J¢p: X — ¥ a one-to-one isometry, s.t. for all Borel set A, P'(¢(A)) = P(A).
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A statistical test of isomorphism between mm-spaces

Two mm-spaces (Z,8,P) and (%,6', P') are isomorphic [Gromov 81] if :
J¢p: X — ¥ a one-to-one isometry, s.t. for all Borel set A, P'(¢(A)) = P(A).

How to build a test of level @ >0 to test the null hypothesis
Hy : “(%,8,P) and (#,6",P') are isomorphic” ?

Vs
Hy : “(%,8,P) and (#&,6',P) are not isomorphic” ?

@,8',P)
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From the Gromov-Wasserstein distance to the DTM-signature

The Gromov-Wasserstein distance [Mémoli 10'] GW is a metric such that
GW(%,6,P),(%,56',P") =0 iff the mm-spaces are isomorphic.
/\ Too high computational cost.

Definition

The DTM-signature, dp p(P) is the distribution of dpyh()() when X ~ P.

Theorem (Brécheteau)

Wy (dpp (P),dp j, (P)) <
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Bootstrap approximation

Definition

Defined by de,h(Pn) with Py from (X1, Xo,...,XyN) and Py, from (X1, Xo,..., Xp).

Statistic :
T =vnW (dpy,; (Pn),dpy p (P'n))
Subsampling distribution :

L (P)= 2" (VAW (dpy,n (Pa).dpy,n (PY)1PN)
Under hypothesis Hy, £ (T) is approximated with £* = %2* (P) + %cﬁf* ().
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Bootstrap approximation

Definition
Defined by de,h(Pn) with Py from (X1, Xo,...,XyN) and Py, from (X1, Xo,..., Xp).

Statistic :
T =vnW (dpy,; (Pn),dpy p (P'n))
Subsampling distribution :

L (P)= 2" (VAW (dpy,n (Pa).dpy,n (PY)1PN)
Under hypothesis Hy, £ (T) is approximated with £* = %2* (P) + %cﬁf* ().

Cdf of £Z(T) and £* (P) (Bunny)
N =10000, n=100, h=0.1
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The error of type |

Test :
(PN,n,h = ]lTEQa,N,n,Il
with §q 5,5, the a-quantile of £*.

Theorem (Brécheteau)

If P is supported on compact subsets of R4 ; ZLGpp - G%hlll) is atomless ;
1
n~N°e;
. f max{d,2}
@ in the general case, if p > ===,
@ in the (a, b)-standard case, if p > 1,

then Ppp) (P n,n) — @, when N — co.

Gpp and G’,, independent Gaussian processes with covariance kernel
Bh Ph

(s, 1) = Fqp, ,(p)(5) (1 —FdP‘h(P)(t)] for s<t.
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The error of type |l

1
n~N°r with p>1
X, % : compact subsets of R4,

Theorem (Brécheteau)

There is nppr such that Vn=nppr,

W (dp p(P), dp ,(P)) n

002 Tyinm2
Smax{DlamP,DlamP,}

Pppy (1= Pnnn) <4exp| -
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N =2000 points; @ =0.05, h=0.05, n=20.

Comparison to the spiral with shape parameter 10 (grey).

spiral shape parameter 15 20 30 40 100
type | error DTM 0.050 0.049 0.051 0.044 0.051
type Il error DTM 0.475 0.116 0.013 0.023 0.015
type Il error KS 0.232 0.598 0.535 0.586 0.578

Type | and type Il error approximations
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2) Bregman trimmed clustering
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The DTM, a tool for trimming

Py, : restriction of P to the ball of P-

mass h
df ;0 = Pyl — I ;
= inf Py(x,.)
hP<P
with y(x,.) = . — x|

a
For the DTM : r‘ \/\

1-he | \

df’ﬂl (X infnpsppll. —x|2

Minimizer x* : Trimmed barycenter
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The DTM a tool for Trimming k-means

codebook ¢=(cy,c2,...,Ck)
y(c,) =minjep g ll.—¢;l1?
’. jel.kll-—¢€j

B(x,1) = Uje1.kB(cir 7).
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The DTM a tool for Trimming k-means

codebook ¢=(cy,c2,...,Ck)
y(c,) =minjep g ll.—¢;l1?
’. jel.kll-—¢€j

B(x, 1) <~ Uier.xB (cin 7).
df)’n ic— infnpsppminjelnk I.— ;2

Minimizer ¢* : Optimal codebook for ;
Trimmed k-means [Cuesta et al. 97']
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An example of trimmed clustering with a Bregman divergence

QR4 convex set, ¢:Q— TR strictly convex and €. Bregman divergence

dp: ()= P =P = (Vydh,x—y),Vx,y€Q

o)

P 4
|
|
(
I

-

o
N p

dalz, 1)

+
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An example of trimmed clustering with a Bregman divergence

QcR? convex set, ¢:Q — 1R strictly convex and %. Bregman divergence

dp: ()= G =P —(Vydh,x—y),Vx,y€Q

'
Uity
Poisson distribution :
—log(pg(x)):—log(;e_ ) T 5T
= dg(x,0) + C(0),
for ¢(x) = xlog(x) — x, ]

and dg(x,0) = xlog(%) - (x— ).
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Bregman trimmed clustering

Bregman h-trimmed variation given ¢ - or - Bregman-divergence-to-measure :

(c)— inf Pmlnd (,ci)
nb<p jel. (A]

o

A Bregman h-trimmed k-optimal codebook ¢* is any minimizer ¢ of the criterion
dgb,P,n(c)-

Theorem (Brécheteau, Fischer and Levrard)

I ——— o
Assume that ¢ is ‘6% and strictly convex and Fy = Conv(Supp(P)) c Q.
Then, the minimum c* exists.
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Some theory

€, : minimizer of dy p, p-

Theorem (Brécheteau, Fischer and Levrard)

If P is continuous, P||.||P <oo for some p>2, ¢ is €» on Q,
Fo = Conv(Supp(P)) € Q° and c* is the unique minimizer of d¢,,pyn, then :

lim dist(€,,c¢*)=0 a.e.
n—+oo

and

. A _ *
Lim dg,pn(€n) =dg,py(c) a.e.

This convergence holds at a parametric rate L.

vn

Theorem (Brécheteau, Fischer and Levrard)

Assume that P|.|P <oo. Then, for n large enough, with probability greater than
p
1-n"2 -2e™*, we have

~ «_ Cp
d -d =—W .
¢,P,n (€n) »,Pn (") = 7]\/7_1( +v/x)
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cluster
o
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Poisson mixture

Gaussian mixture

cluster

P2

P2

Pl

Gamma mixture

P1

Binomial mixture
Clustering associated to the selected parameter 1 - dimension 2
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3) Distance to a compact set inference, with
a quantization point of view

. Q.0 O ;
."J. ‘.0 (- .°..
oo "% . '@
] & " Grg®
@, G e

Claire Brécheteau Towards a robust vision of geometric inference



How to characterise a probability distribution at best with a fixed budget ?

Given P, Q or X, :
Find ¢ and w such that the k-power function

X +— min ||x—cj||2 +w?
jel.k J

is a good approximation of the square of the distance to &,

dgg:xH;lreli%nllx—yllz
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What about using (trimmed) k-means for quantization problem ?

Trimmed k-means does not work...

© 0‘ ’.0‘. 'H

pe f.‘..‘ .? ; /.'rQ.
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The DTM, an alternative definition as a power distance when p =2 [Chazal,

Cohen-Steiner, Mérigot 09']

3,0 =Pyl — xII?

= inf P|.—x|?
hP<P

= Im(Pyp) = xI1? + v(Py 1))

= inf |m(P)-x|*+ v(P)
hP<P

— Notation : Mean m(P), Va-
riance v(P).
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The DTM, an alternative definition as a power distance when p =2 [Chazal,

Cohen-Steiner, Mérigot 09']

3,0 =Pyl — xII?
= inf P|.-x|?
hP<P
= Im(Pyp) = xI1? + v(Py 1))
= inf |m(®)-x|?+ v(P)
hP<P
Notation : Mean m(P), Va-
riance v(P).

~ Sublevel sets of the DTM : union of balls.
Approximation : x-witnessed distance [Guibas Morozov Mérigot 11'] n balls
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A measure-dependant Bregman divergence

Set ¢py, the function defined on R by

ppp:x— IxI%—dF , (). (1)

[Chazal, Cohen-Steiner, Mérigot 09'] The map ¢pj, is convex.
The Bregman-divergence associate to ¢pj, satisfies for x, reR4 :

dgp, (5 1) = llx—m(Py pII° + v(Py ) —d3, |, ()

min d (., t;) = | min ||x— m(P 2 uP, )| -d2, (0
jeluk Ppn jel..k” Prp)I=+ VP P

~» Bregman clustering with dg, !
Rq : Theory (For practice )!
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Bregman clustering with dy,, or the k-PDTM

t* cargminP min dg,, (., )
S Sl A

_ . . _ 2
=arg mtlnPjIélll.I.lk II. m(Ptjyh)II + V(Ptj'h)

Definition

The k-power distance-to-measure (k-PDTM) dp j, ;. is defined for xeR by :

d2, . () = min |x— mPq )2+ v(Ps 3)
Phk jel.k tj’h tj’h
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Graphical representation for the k-PDTM

w(c) = inf{w >0|Vxe ]Rd, [lx— c||2 to?= df,yh(x)}

Theorem (Brécheteau and Levrard)

d2, (0= min [|x-cI° +@?(c})
Pk jel..k J J

for
cte argmin{P min ||.—c; 12+ wz(cj)}
jel.k
g T T T T T (=} T T T T T
-0.5 0.0 0.5 1.0 15 -05 0.0 05 1.0 15
k-PDTM, k=2 centres k-PDTM, k=10 centres
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Wasserstein stability for the k-PDTM

Proposition

If Supp(P) € B(0,K), and Q||.|| < oo,
then P‘dé,h,k(') 7df’,h(')‘ is bounded from above by

31~ A pllco B0 + P[0, = 0, ,00) + 4W1 (P, Q) sup (P
seR

2
with P(df,,h’k(.)—d}%'h(.)) of order k™ @' for a “d’-dimensional distribution.
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Approximation of the k-PDTM from point clouds

Supp(P) = Z < B(0,K)

X;=Y;+Z;, Y; and Z; all independent, Y; ~ P, Z; sub-Gaussian with variance
0% <K?

Qn= %2?215&-

Theorem (Brécheteau and Levrard)

For every p >0, with probability larger than 1—10n"P, we have

3
K2(p+1logn)2 Ko
2 2
[P, 40~ 0| < CVEIT—E = + 6
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Approximation of the k-PDTM from point clouds

Supp(P) = Z < B(0,K)

X;=Y;+Z;, Y; and Z; all independent, Y; ~ P, Z; sub-Gaussian with variance
0% <K?

Qn= %2?215&-

Theorem (Brécheteau and Levrard)

For every p >0, with probability larger than 1—10n"P, we have

) 3
< cvRa Xt Dlogm)? | Ko

2 _ 42
)Pdon,h.k(') dQ,h,k(')‘ NG 7

~~ optimize in k the quantity

CVEK2((p+1)log(n)) 2
hvn

_2
+Cth a .,
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Approximation of the k-PDTM from point clouds

Supp(P) = Z < B(0,K)

X;=Y;+Z;, Y; and Z; all independent, Y; ~ P, Z; sub-Gaussian with variance
0% <K?

Qn= %2?215&-

Theorem (Brécheteau and Levrard)

For every p >0, with probability larger than 1—10n"P, we have

2 3
SC\/HK ((p+1)log(n))2 +CK0

2 _ 42
)Pdon,h.k(') dQ,h,k(')‘ NG 7

~~ optimize in k the quantity

CVEK2((p+1)log(n)) 2
hvn

_2
+Cth a .,

d'
Optimal choice k ~ nd'+4.
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Geometric inference with the k-PDTM

Theorem (Brécheteau and Levrard)

Assumption : Vx€ %, PB(x, M) = CP)r? Al
2 _ 2
Set A% = PdQ,h,k(')' then,

’2 1
B +20p+ W2 (BQ)R™2.

1
sup |dgp () —dg (¥ = C(P) d'+2A
xeR4
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Numerical lllustrations

/' uus:ver

/ I

{

/ i
k-PDTM (n=1)

L 8-

number of ponts assigned 1 custers.

Trimmed k-PDTM (n<1)
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Method New tool
Isomorphism Test DTM-signature dp,j,(P)
Bregman clustering Bregman divergence-to-measure ¢— dy py(c)
Quantization & dg- inference k-PDTM x—dp , (%)
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Method New tool
Isomorphism Test DTM-signature dp,j,(P)
Bregman clustering Bregman divergence-to-measure ¢— dy py(c)
Quantization & dg- inference k-PDTM x—dp , (%)

Future work :
Non asymptotic statistics for studying

Ipeargmin inf Puy(t,.)
I nP,<P,
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Thank you!
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The DTM and the trimmed log-likelihood

F ={Pg}y: Py with density py.
¥(0,.) = —log(pg ()

B(x,1) — upper-level set of py.

I)f

0.

df, :6~ inf,p_pP~log(py()

Minimizer 6* : Trimmed log-likelihood maximizer
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The DTM and the trimmed log-likelihood

F ={Pg}y; Py with density py.
0=(01,0,,...,0¢)

¥©,)=minje; x- log(pgj @)]

B(x, 1) < union of upper-level set of the Po;s-

dgn 10— infnpsppminjel..k —log(pgj(.))

Minimizer 8* : Optimal codebook for some trimmed clustering...
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Binomial Gamma Gaussian Poisson
L A
0.8-
i § %
3
L3 . i@

-
-HE
1

divergence I %
-4 L
) N - ]
Binomial divergence I by ! {
0.6- Gamma divergence
-+— Gaussian divergence
-+— Poisson divergence
telust
| | | | | | | | | I I | | I I |
2 5§ 8% 2§ 85 2§85 2 §5 5 2
s = E W E 8 B T s & E wE 8 E
om (s3] o om
method
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Robust heteroscedastic Gaussian clustering

St d .
Yoo 5 d
N TRV . o
B 150 %5, T
vie "
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8 o0°
3 TS
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2. d
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