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We consider a compact Polish space (X ,d) that is homogeneous in the
sense that it can be equipped with a uniform probability measure µ0: a mea-
sure that puts the same mass to all balls sharing the same radius, for every
radius (small enough). Given a sample of points on X , we introduce and
study two different distance-based families of statistical tests. The first ones
test that the sample is uniformly spread on X , at least as well as an i.i.d.
sample from µ0, the second ones test that the sample is independently identi-
cally distributed (i.i.d.) from µ0. The tests statistics are based on distance-to-
measure signatures, as introduced in Brécheteau (2019), and thus, on nearest
neighbours computations. We investigate stability and discriminative proper-
ties of the signatures, provide separation rates for the tests and illustrate their
performance on several examples including Riemanian manifolds involved
in directional statistics or hyperbolic spaces. We compare the discordant be-
haviours of the two families of tests on non i.i.d. data sets, provide data-driven
methods to select the best number of nearest neighbours, and propose an ap-
plication to shape analysis.

1. Introduction.

1.1. Testing uniformity and/or independence of data points on non Euclidean data. Clas-
sical statistical methods are mostly designed to deal with Euclidean data, lying in Rd. How-
ever, in many areas of applications, data lie in more general spaces like graphs or more gen-
eral Riemannian manifolds such as the flat torusT2, hyperbolic spaces, or spaces dedicated to
directional data: the circle S1, the 2-dimensional sphere S2, hyperspheres, rotational groups
such as the GrassmannianGp,d (the group of projection matrices on p-dimensional subspaces
of Rd) or the Stiefel manifold. A recent overview on advanced methods for directional data
is available in Pewsey and García-Portugués (2021). This overview updates the overview of
Jupp and Mardia (1989). Applications of statistical method on non Euclidean data in aeronau-
tics for instance are available in Dai and Müller (2018); Le Brigant and Puechmorel (2019).
More generaly, in Pewsey and García-Portugués (2021), the authors provide recent refer-
ences of applications of statistical methods on directional data in the fields of bioinformatics,
astronomy, medicine, genetics, neurology, image analysis, text mining, machine learning,
the modelling of wildfires and sea conditions. Examples of data embedded into negatively
curved spaces are available in Cabanes (2022) for instance, for radar and audio data, or in
Klimovskaia et al. (2020), in biology, for single cells data.

The question of testing if a sample of points is uniformly distributed on a space origi-
nates from Bernoulli (1735). It is still an ongoing question. For data on compact Riemanian
manifolds, both Sobolev tests Giné M. (1975) and tests based on nearest neighbours com-
putations Ebner, Henze and Yukich (2018) have been investigated. For directional data, the
question has been extensively tackled in the past decades. Testing uniformity in the context
of directional data boils done testing that there is no priviledged direction in the data. A
recent overview in this context is available in García-Portugués and Verdebout (2018), es-
pecially for the circle, the sphere, and the hypersphere. Sobolev tests, including the tests of

1



2

Beran (1968, 1969) (on homogenous spaces, and more specifically on the sphere), and of
Giné M. (1975) (on general Riemannian manifolds) consists in projecting the data on the
harmonics. Such tests encompass the tests of Rayleigh (1919) and of Bingham (1974). Both
of these two tests were modified by Jupp (2001) to improve their convergence under the null
hypothesis. Other tests based on the mean value of pairwise distances were developped in
Pycke (2010); Bakshaev (2010). Refinements of Sobolev tests on S1 were designed in Bog-
dan, Bogdan and Futschik (2002) with a data-driven selection of the number of harmonics
for the Sobolev tests. This method was generalised in the context of compact Riemannian
manifolds in Jupp (2008, 2009). Uniformity tests in the high dimensional context have also
been investigated in Paindaveine and Verdebout (2016); Cutting, Paindaveine and Verdebout
(2017), or in the noisy context in Lacour and Pham Ngoc (2014) for S2. We refer the reader
to García-Portugués and Verdebout (2018) for the many other existing tests for uniformity for
directional data. The specific case of data in the Grassmannian have been tackled in Chikuse
and Watson (1995); Chikuse (2003). Uniformity tests are particular instances of goodness-
of-fit tests, such as tests based on kernels Gretton et al. (2012) or on optimal transport Hallin,
Mordant and Segers (2021), that could also be used to test uniformity of data. A last remark
is that there is no onnibus test that can be most powerful under any kind of alternatives Escan-
ciano (2009). For instance, test procedures performant against unimodal alternatives are not
necessarily performant against multimodal alternatives. Therefore, it could be interresting to
consider several tests at the same time, and use an adaptative procedure to aggregate the tests,
Fromont and Laurent (2006); Schrab et al. (2023).

Tests for uniformity on [0,1]d could be used to solve the problem of testing independence
of coordinates, for i.i.d. continuous random vectors on Rd, after pushing data through their
marginal cumulative distribution functions. The question of testing the independence of the
coordinates originates from Hoeffding (1948). Recent work based on copulas is available in
Genest, Quessy and Remillard (2007). The question of testing serial dependence, that is, if
successive data have been generated independently, has also been widely studied Hallin, In-
genbleek and Puri (1985), see also the runs tests inRd of Marden (1999); Paindaveine (2009).
However, the tough question of wether or not a sample has been generated as a sample of
n points, independent, from the uniform distribution, does not seem to have been considered
in the litterature, as far as we are concerned. Such tests could be used to design and evaluate
new procedures to generate i.i.d. uniform samples on general homogeneous spaces, e.g. Rat-
ner (1987) in the context of dynamical systems. Although tests of uniformity mentioned in
the previous paragraph could be used as bilateral tests to reject both non uniformity of sam-
ples and too important regularity of samples (like grids), most of these tests have not been
designed for the purpose of testing independence, and power loss should be expected when
considering non i.i.d alternatives. This is the problem we tackle in this paper, together with
the problem of testing only homogeneity.

1.2. Comparison of probability measures on homogeneous spaces. Testing uniformity
(and independence) on spaces demands a proper framework. In this paper, we will consider
homogeneous spaces, on which a uniform probability measure exists. We require that these
spaces to be compact and Polish, to allow the use of Wasserstein distances to metrize weak
convergence. Before defining all of the notions and tools, we provide first notation that will
be used throughout the paper.

Let (X ,d) be a compact Polish space. For simplicity, we assume that (X ,d) is a com-
plete separable metric space. The diameter of (X ,d) is defined as the maximal distance
between two elements of X : D(X ) = max{d(x, y), x, y ∈X }. It is well-defined and fi-
nite since (X ,d) is compact. The open ball centered at x ∈X with radius r > 0 is de-
noted by Bx,r = {y ∈X , d(x, y) < r} and its closure by Bx,r = {y ∈X , d(x, y) ≤ r}.
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Let P(X ) be the set of Borel probability mesures (also called probability distributions) on
(X ,d). The support Supp(µ) of a probability measure µ ∈P(X ) is defined as the small-
est closed subset of X with µ-mass 1. A random variable X defined on some probability
space (Ω,F , P ), with values on (X ,d), follows the distribution µ ∈P(X ) if for all Borel
set B of X , P (X ∈ B) = µ(B). The expectation of f(X) for a µ-integrable function f
is then defined by EX∼µ[f(X)] = Eµ[f(X)] =

∫
Ω f(X(ω))dP (ω) =

∫
X f(x)dµ(x). The

Dirac mass at x ∈X , δx ∈P(X ), is defined by δx(B) = 1x∈B , for every Borel set B of
X , where 1x∈B is the indicator function equal to 1 if x ∈B and to 0 elsewise. For n ∈N∗,
let Pn(X ) = { 1

n

∑n
i=1 δxi , x1, . . . , xn ∈X } be the set of uniform probability distributions

supported on a set of n points of X . Both P(X ) and Pn(X ), equipped with the Wasser-
stein distance (c.f. Definition 1.2), are compact Polish spaces (Villani (2008), proof of Theo-
rem 1.1 and Lemma S.5.3 in Brécheteau (2025)). Moreover, bothW1 orW2 provide the same
Borel σ-algebra on P(X ) and Pn(X ) since W1 ≤W2 ≤

√
D(X )

√
W1. Therefore, we

may define P(Pn(X )), the space of Borel probability measures on Pn(X ) equipped with
the Wasserstein distance. Let µn be a random measure with distribution �n ∈P(Pn(X )).
The expectation of f(µn) is denoted byE�n [f(µn)] =Eµn∼�n [f(µn)] and the probability of
events depending on µn by P�n or Pµn∼�n . A random vector (X1, . . . ,Xn) is an n-sample
from µ ∈P(X ), when X1, . . . ,Xn are n independent random variables with distribution
µ ∈P(X ). The distribution of an n-sample from µ is the product measure, denoted by
µ⊗n, and the random measure µ̂n = 1

n

∑n
i=1 δXi is the empirical measure associated to the

n-sample (X1, . . . ,Xn). Its distribution is denoted by �̂n. The expectation of f(µ̂n) is de-
noted by E�̂n [f(µ̂n)] = Eµ̂n∼�̂n [f(µ̂n)], or with a slight notational abuse, by Eµ[f(µ̂n)],
and the probability of events depending on µ̂n by P�̂n , Pµ̂n∼�̂n or Pµ.

Testing uniformity of samples of points makes sense on spaces where a uniform probabil-
ity measure exists, that is, on homogeneous spaces. In the remaining of the paper, we will
assume that the compact Polish space (X ,d) is h0-homogeneous, as defined below.

DEFINITION 1.1 (Loomis (1945)). A uniform probability measure µ0 on a Polish space
(X ,d) is a Borel probability measure µ0 ∈P(X ) that satisfies:

(1.1) ∀x, y ∈X , ∀ε > 0, µ0(B(x, ε)) = µ0(B(y, ε)),

whereas for h0 > l0 (with l0 = 1
|X | if X is discrete with cardinality |X | and l0 = 0 if X is

not discrete), an h0-uniform probability measure satisfies:

(1.2) ∀x, y ∈X , ∀0< r ≤ δµ0,h0
, µ0(B(x, r)) = µ0(B(y, r)),

where δµ0,h0
= δµ0,h0

(x) = inf{r > 0, µ0(B(x, r))> h0} for some (and thus for all) x ∈X .
It means that balls with the same radius, with mass at most h0, have the same mass.

The space (X ,d) is (h0-)homogeneous if an (h0-)uniform probability measure µ0 exists.

Such h0-uniform probability measures do not always exist. For instance, for h0 > l0 =
1
3 , there is no h0-uniform measure on the space ({a, b, c},d) with d(a, b) = 1, d(a, c) =
1, d(b, c) = 2. There is no h0-uniform measure on the segment [0,1] ⊂ R, because of the
boundary. However, a uniform measure exists on the circle and the sphere. An h0-uniform
measure also exists on the flat torus and the Bolza surface, for h0 small enough with respect to
their injectivity radius. These exemples are described in Section S.2.2 in Brécheteau (2025).

A second condition for the problem of testing uniformity to make sense is the unicity
of such an h0-uniform measure µ0. This unicity is given in Christensen (1970), for which
we give a formulation in Theorem S.1.1 with a proof in Section S.5.4.1, both in Brécheteau
(2025).

Given a random measure µn on Pn(X ), testing the homogeneity of its support requires
a tool to compare µn to the uniform measure µ0. In this paper, we will use the Wasserstein
distances, distances between probability measures that metrize weak convergence.
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DEFINITION 1.2 (Villani (2008)). Let (X ,d) be a compact Polish space. For p ∈ [1,∞),
the Lp-Wasserstein distanceWp,d (orWp) is defined for every µ,ν ∈P(X ) by:

(1.3) Wp
p,d(µ,ν) = inf

π∈π(µ,ν)

∫
X ×X

dp(x, y)dπ(x, y),

where π(µ,ν) denotes the set of probability measures π ∈P(X ×X ) with first marginal µ
and second marginal ν. The Lp-Wasserstein distance is the smallest value of E[d(X,Y )p]

1

p

over all possible joint distributions π ∈ π(µ,ν) of (X,Y ).

When X =R, the Wasserstein distanceWp for p≥ 1 has an expression depending on the
quantile functions Qµ and Qν of µ and ν in P(R), given by (1.4). This formulation in terms
of Lp norm makes the Wasserstein distance convenient to compare distributions on R.

(1.4) Wp
p (µ,ν) =

∫ 1

u=0
|Qµ(u)−Qν(u)|pdu.

Almost sure weak convergence of the empirical measure to the sampling measure
is established since the seminal works of Varadarajan (1958). Rates for E [Wp(µ̂n, µ)]
or infµn∈Pn(X )Wp(µn, µ) have been obtained in Weed and Bach (2019); Boissard and
Le Gouic (2014); Bobkov and Ledoux (2019); Fournier and Guillin (2015); Mérigot, Santam-
brogio and Sarrazin (2021); Mérigot and Mirebeau (2016); Carlier, Delalande and Mérigot
(2024); Le Gouic and Loubes (2017) in various contexts. From such bounds, we may deduce
the convergence to zero in probability, uniformly in the sampling distribution µ ∈P(X ), of
W2(µ̂n, µ), in Theorem 1.1. Such a result has been proved for Wp, p ≥ 1, in (Hallin, Mor-
dant and Segers, 2021, Theorem 1, Corollary 1) for measures in Euclidean space Rd under
uniform integrability of the p-th order moment. Theorem 1.1 is more general in the sense
that we consider a general Polish space, but more restrictive in the sense that we assume that
this Polish space is compact. Therefore, the uniform integrability assumption of second-order
moments in Hallin, Mordant and Segers (2021) is not required here since automatically sat-
isfied. Theorem 1.1 is a consequence of the upper bound for the expectation in Boissard and
Le Gouic (2014). In Section S.5.1.1 in Brécheteau (2025), we provide an alternative proof.

THEOREM 1.1. For every compact Polish space (X ,d), we have both:

(1.5) lim
n→∞

sup
µ∈P(X )

Eµ

[
W2

2 (µ̂n, µ)
]

= 0,

(1.6) ∀ε > 0, lim
n→∞

sup
µ∈P(X )

Pµ

(
W2

2 (µ̂n, µ)> ε
)

= 0.

Another process to compare measures on spaces, or more generally metric measure spaces
Gromov (2007), is to push them to P(R), to an image called a signature. The measures
will be compared by comparing their signatures. Such signatures have been introduced and
studied for clustering or testing purposes Osada et al. (2002); Brécheteau (2019), and were
proved stable with respect to the (Gromov-)Wasserstein distance, Mémoli (2011).

1.3. Contributions and organisation of the paper. In this paper, we tacke the ques-
tion of testing that an observed empirical measure µn = 1

n

∑n
i=1 δxi ∈Pn(X ) based on

n observations x1, . . . , xn on a compact homogeneous Polish space X is uniform on X .
More precisely, considering that µn is a realisation of a random measure µn ∼ �n, with
�n ∈P(Pn(X )), we aim at testing the hypothesis

H0“�n = �̂0,n”,



TESTS OF UNIFORMITY ON HOMOGENEOUS COMPACT POLISH SPACES 5

against several alternatives, where �̂0,n is the distribution of empirical measures µ̂0,n based
on i.i.d. n-samples from the uniform distribution µ0 on X . In this paper, we will introduce
two new families of tests, depending on some regularity parameter h ∈ (0,1], corresponding
to a proportion of nearest neighbours. The first family of tests, (φhom

n,h )h∈(0,1], rejects hypoth-
esis H0 when the sample x1, . . . , xn is not uniformly spread on the space X , meaning that
µn is far from µ0. For instance, such tests would not reject H0 for regular grids. The second
family of tests, (φiid

n,h)h∈(0,1], rejects hypothesis H0 when the sample x1, . . . , xn does not be-
have as an i.i.d sample from the uniform distribution µ0. Such tests would always reject H0

for regular grids, since points on a grid are not independent.
For this purpose, we first introduce the notion of DTM-signature, as in Brécheteau (2019),

based on the distance-to-measure (DTM) of Chazal, Cohen-Steiner and Mérigot (2011) that
depends on the parameter h ∈ (0,1]. In Proposition 2.3, we prove that the family of DTM-
signatures characterise the uniform distribution, that makes it a relevant tool to test unifor-
mity. We also provide examples of lower bounds for the distance between a signature and
the signature of the uniform distribution. In particular, in Proposition 2.5, we consider the
case of a measure with a density bounded from below, with respect to the uniform measure.
In Proposition 2.1 and 2.2 we provide upper bounds for the distance between signatures in
terms of Wasserstein distance and derive parametric rates in expectation and thus in probabil-
ity for the pseudo-distance induced by signatures. Then, in Definition 2.3, we introduce the
notion of barycenter signature, as the average empirical signature for i.i.d. n-samples from a
distribution µ ∈P(X ). We also investigate its stability and discriminative properties.

The tests (φiid
n,h)h∈(0,1] are based on a comparison of the empirical signature to the barycen-

ter signature, whereas the tests (φhom
n,h )h∈(0,1] are based on a comparison of the empirical sig-

nature to the signature of the uniform distribution. They are both defined in Section 3.1. In
particular, we prove their uniform asymptotic convergence in Theorem 3.1. This performance
in terms of power, is a consequence of the uniform convergence of Wasserstein distance be-
tween measures and empirical measures, uniformly on P(X ), recalled in Theorem 1.1. We
also provide parametric upper bounds on the separation rates for quite general alternatives
in Theorem 3.2, and provide lower bounds in 1

n for the separation rates for i.i.d. samples in
Theorem 3.3. Finally, we illustrate the performance of the two families of tests, discuss the
selection of the parameter h by investigating both aggregation of tests strategies and multiple
testing strategies. We compare our tests to lots of classical tests of uniformity available in the
litterature, on the circle S1, the sphere S2, the torus T2 and the Grassmannian, and consider
an illustration in the field of shape analysis.

The paper is organized as follows. We provide definitions and study stability and discrimi-
native properties for the DTM-signatures and the barycenter signatures in Section 2. We also
give examples of signatures computations for the circle S1 in Section 2.3. In Section 3 we
define and study the two families of statistical tests of uniformity. In particular, consistency,
and separation rates for the tests are discussed in Section 3.2. Extensive numerical investi-
gations on the tests are available in Section 4. Additional results, numerical illustrations and
proofs are available in the supplementary material, Brécheteau (2025).

2. Stable and discriminative signatures. We introduce DTM and barycenter signa-
tures, provide main discrimination and stability properties, and focus on the example of S1.

2.1. A family of signatures, to characterize uniformity of measures.

2.1.1. Generalities. The distance-to-measure functions (DTM) are generalisations of
distance functions to the support of a measure. They depend on some smoothing parame-
ter h ∈ [0,1] that makes them robust to Wasserstein noise in data. They are defined in terms
of measures of balls, or equivalently, in terms of Wasserstein metrics.
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DEFINITION 2.1 (Chazal, Cohen-Steiner and Mérigot (2011); Buchet et al. (2016)). For
h ∈ (0,1] and µ ∈P(X ), the distance-to-measure dµ,h : X 7→ [0,D(X )] with regularity
parameter h is defined for every x ∈X by:

(2.1) d2
µ,h(x) =

1

h

∫ h

l=0
δ2
µ,l(x)dl,

with δµ,l(x), the radius of the ball centered at x with µ-mass h:

(2.2) δµ,l(x) = inf{r > 0, µ(Bx,r)> l}.

Equivalently, if Subµ,h = {ν ∈P(X ), hν ≤ µ} denotes the set of probability measures
ν ∈P(X ) so that hν is a submeasure of µ, and µx,h ∈ Subµ,h is any restriction of µ to the
ball centered at x with µ-mass h, (more precisely, hµx,h coincides with µ on Bx,δµ,h(x) and
is unique if the µ-mass of the boundary of Bx,δµ,h(x) is null),

(2.3) dµ,h(x) = inf
ν∈Subµ,h

W2(δx, ν) =W2(δx, µx,h).

For µn ∈Pn(X ), the distance to the measure µn at x ∈X coincides with the mean
squared distance from x to its q = nh first nearest neighbours (xj(x))1≤j≤q in Supp(µn):

(2.4) ∀x ∈X , d2
µn,h(x) =

1

q

q∑
j=1

d2(x,xj(x)).

For discrete homogeneous spaces, the sequence of distances to nearest neighbours in X ,
d1 = d(x,x1(x)) ≤ d2 = d(x,x2(x)) ≤ · · · ≤ d|X | = d(x,x|X |(x)) does not depend on the
point x ∈ X . This property is still satisfied for continuous homogeneous spaces X in
the sense that the family (δµ0,h(x))0≤h≤1 does not depend on x ∈X . As a consequence,
the distance to the measure µ0, dµ0,h, is constant. The same phenomenon appends for h0-
homogeneous spaces, until the parameter h= h0:

(2.5) ∀h ∈ [0, h0],∃dh ≥ 0, ∀x ∈X , dµ0,h(x) = dh.

For discrete spaces X with cardinality N ∈N∗ and q =Nh an integer, dh =
√

1
q

∑q
i=1 d

2
i .

Exact computation of dh is given in Section 2.3 for the unit circle S1, and in Section S.2.2
in Brécheteau (2025) for the sphere S2, the flat torus T2, and the Bolza surface B. DTM
functions characterize the supports since dµ,0(x) = δµ,0(x) = 0 for x ∈ Supp(µ), satisfy
stability properties Chazal, Cohen-Steiner and Mérigot (2011); Buchet et al. (2016):

(2.6) ∀µ,ν ∈P(X ), ‖dµ,h − dν,h‖∞ := sup
x∈X
|dµ,h(x)− dν,h(x)| ≤ 1√

h
W2(µ,ν),

and are 1-Lipschitz, Chazal, Cohen-Steiner and Mérigot (2011); Buchet et al. (2016):

(2.7) ∀µ ∈P(X ), ∀x, y ∈X , |dµ,h(x)− dµ,h(y)| ≤ d(x, y).

The L1-distance-to-measure signatures have been first introduced in Brécheteau (2019),
is the context of two-samples testing, with approximations based on a subsample of the data.
In this paper, we define L2-distance-to-measure signatures (DTM-signatures) with approxi-
mations based on the whole sample, and prove stability and discriminative results.

DEFINITION 2.2. For h ∈ [0,1) and µ ∈P(X ), the distance-to-measure signature of
µ with parameter h is defined as the distribution of dµ,h(X), where X is a random variable
from µ, that is, as the pushforward (denoted by #) of µ by the L2-DTM function dµ,h:

(2.8) sh(µ) = dµ,h#µ ∈P([0,D(X )]).
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Thus, the DTM-signature to the measure µn = 1
n

∑n
i=1 δxi with parameter h, is defined by:

(2.9) sh(µn) =
1

n

n∑
i=1

δdµn,h(xi) ∈Pn([0,D(X )]).

2.1.2. Stability results. Signatures inherit the stability properties of the DTM.

PROPOSITION 2.1. For every µ, ν ∈P(X ), we have both:

(2.10) W1(sh(µ), sh(µ0))≤W2(sh(µ), sh(µ0))≤ 1√
h
W2(µ,µ0),

(2.11) W1(sh(µ), sh(ν))≤W2(sh(µ), sh(ν))≤
(

1 +
1√
h

)
W2(µ,ν).

A proof of Proposition 2.1 is available in Section S.5.2.1 in Brécheteau (2025).
The empirical distribution is strongly consistent in the Wasserstein distance in the sense

that for every µ ∈P(X ),W2(µ̂n, µ)→ 0 almost surely as n→∞. This is a consequence of
the almost surely weak convergence of the empirical measure µ̂n to the sampling measure µ
on the Polish space X Varadarajan (1958), and the fact thatW2 metrizes weak convergence
in compact Polish spaces (Villani, 2008, Theorem 6.9). It follows from Proposition 2.1 that:

(2.12) ∀µ ∈P(X ), Pµ

(
lim
n→∞

W1(sh(µ̂n), sh(µ)) = 0
)

= 1.

A direct consequence of Theorem 1.1 and Proposition 2.1 is the convergence to zero in
probability, uniformly in the underlying distribution µ ∈P(X ), of the Lp-Wasserstein dis-
tance between signatures and empirical signatures, for p ∈ {1,2}:

(2.13) ∀ε > 0, lim
n→∞

sup
µ∈P(X )

Pµ (Wp(sh(µ̂n), sh(µ))> ε) = 0.

Rates for E [Wp(sh(µ̂n), sh(µ))] with p ∈ {1,2} can be derived from the sharp rates for
E[Wp

p (µ̂n, µ)] Weed and Bach (2019), see also Fournier and Guillin (2015); Boissard and
Le Gouic (2014). These rates are necessarily higher than rates for infµn∈Pn(X )W

p
p (µn, µ),

Mérigot, Santambrogio and Sarrazin (2021); Mérigot and Mirebeau (2016). In Proposition
2.2, we provide sharper bounds based on some arguments in Chazal, Massart and Michel
(2016), based on bounds for Wasserstein distances in R, in Bobkov and Ledoux (2019).

PROPOSITION 2.2. Let h ∈ (0,1], lh > 0.
General case: There exists some nh ∈N and C > 0 that does only depend on the diameter

of X (not on h nor on µ) so that for every n≥ nh:

(2.14) sup
µ∈P(X ), infx∈X dµ,h(x)≥lh

Eµ [W1(sh(µ̂n), sh(µ))]≤ C

hlh
√
n
,

(2.15) sup
µ∈P(X ), infx∈X dµ,h(x)≥lh

Eµ [W2(sh(µ̂n), sh(µ))]≤ C

hlh
√
n

+
C

n
1

4

.

Particular case with finite moment: Let c > 0. For µ ∈P(X ), if sh(µ) has a density
fµ,h with respect to the Lebesgue measure onR and a cumulative distribution function Fµ,h,
let

(2.16) Jµ,h =

∫ +∞

x=−∞

Fµ,h(x) (1− Fµ,h(x))

fµ,h(x)
dx.
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Under these asumptions, there exists some nh ∈N and C > 0 that does only depend on the
diameter of X and on c so that for every n≥ nh:

(2.17) sup
µ∈P(X ), Jµ,h<c, infx∈X dµ,h(x)≥lh

Eµ [W2(sh(µ̂n), sh(µ))]≤ C

hlh
√
n
.

Case of the uniform measure µ0: For the uniform measure µ0, we get that for some
constant C > 0, for every n≥ nh:

(2.18) Eµ0
[W1(sh(µ̂0,n), sh(µ0))]≤Eµ0

[W2(sh(µ̂0,n), sh(µ0))]≤ C

hdh
√
n
,

where dh is the constant value of the DTM, (2.5).

A proof of Proposition 2.2 is available in Section S.5.2.2 in Brécheteau (2025). For h ∈
(0,1], the assumption infx∈X dµ,h(x)≥ lh for some lh > 0 is satisfied if and only if no point
x ∈X has a µ-mass larger or equal to h. Indeed, dµ,h is continuous (2.7) on the compact set
X , so it attains its minimum, that is equal to 0 if and only if µ({x})≥ h for some x ∈X .

2.1.3. Discrimination properties. In this section, we first prove that µ0 is characterized
by its DTM-signatures. Then, we derive lower-bounds for the distance between the signature
sh(µ) and the signature sh(µ0) of µ0, for several alternative measures µ ∈P(X ). Addi-
tional lower bounds are available in Section S.2.1 in Brécheteau (2025).

PROPOSITION 2.3. For every (h0)-homogeneous compact Polish space (X ,d) (with
h0 ∈ (l0,1]), the (h0)-uniform measure µ0, that is unique according to Theorem S.1.1 in
Brécheteau (2025), is determined by its DTM-signatures:

(2.19) ∀H ∈ (l0,1],∀µ ∈P(X ), (∀h ∈ [0,H], sh(µ) = sh(µ0))⇔ µ= µ0,

with l0 = 1
|X | if X is discrete with cardinality |X |, and l0 = 0 if not.

A proof of Proposition 2.3 is available in Section S.5.2.3 in Brécheteau (2025).
However, the (h0)-uniform measure µ0 is not determined by the signature s0(µ) with

parameter h= 0 since s0(µ) = δ0 = s0(µ0) if and only if µ is supported on X . For a given
alternative measure µ ∈P(X ), we may be interested in the set of parameters h ∈ (0,1] for
which the signature sh(µ) differs from sh(µ0). Tests based on these parameters (c.f. Section
3.1) will be powerful. In general, the set of small parameters h for which the signature sh(µ)
coincides with sh(µ0) is discrete:

PROPOSITION 2.4. If (X ,d) is not discrete. If µ 6= µ0, then, there exists H > 0 so that
(0,H]∩ {h ∈ [0,1], sh(µ) = sh(µ0)} is discrete.

The proof of Proposition 2.4 is available in Section S.5.2.4 in Brécheteau (2025).
Measures with a support different to X have a signature different to sh(µ0). In particular,

the case of measures with a constant density on a compact set is studied in Section S.2.1.1 in
Brécheteau (2025), with a lower bound for the distance between signatures. In the following,
we deal with measures with a positively lower bounded density with respect µ0. The lower
bound we get will be used to lower bound the separation rates of our tests, in Section 3.2.3.

PROPOSITION 2.5. Let µl = lµ1 + (1− l)µ0 for l ∈ (0,1) and µ1 ∈P(X ). Then,

W1(sh(µl), sh(µ0))≥ (1− l)µ0(Al,h,µ1
)
∣∣∣d h

1−l
− dh

∣∣∣∼l→0 Ch,µ1
l,
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where Al,h,µ1
=
{
x ∈X | Supp(µ1)∩B

(
x, r h

1−l

)
= ∅
}

is the set of points x for which
the ball centered at x with µl-mass h is included in the complementary set of Supp(µ1),
that is, with radius r h

1−l
, the constant value of the function δµ0,

h

1−l
, and where Ch,µ1

=

Chµ0

(⋃
l>0Al,h,µ1

)
is a non negative constant with Ch = 0 if and only if X is discrete

and h < 1
|X | , and dh is the constant value of the function dµ0,h, as defined in (2.5).

Notice that a sufficient condition for the constant Ch,µ1
to be nonzero in Proposition 2.5 is

that X is not discrete (so that both Ch > 0 and h ∈ (0,1) 7→ rh is continuous) and for some
ε > 0 and x ∈X , B(x, rh + ε) ⊂ Supp(µ1)c. The proof of Proposition 2.5 is available in
Section S.5.2.5 in Brécheteau (2025).

2.2. Barycenters of signatures, to characterize uniformity and independence.

2.2.1. Generalities. For any probability measure s on the space of probability measures
P([0,D(X )]), s̄= arg mins∈P([0,D(X )])Es∼s

[
W2

2 (s, s)
]

is the Wasserstein barycenter of
s. It exists and is unique. It is defined as the probability measure s̄ which quantile function
corresponds to the pointwize mean of the quantile functions Qs (i.e. the generalised inverse
of cumulative distribution functions) of the random measures s ∼ s. Its expression is given
by Agueh and Carlier (2011); Le Gouic and Loubes (2017):

(2.20) s̄=

(
x ∈ [0,1] 7→

∫
Qs(x)ds(s)

)
#λ[0,1]

,

where λ[0,1] is the Lebesgue measure on [0,1] and # denotes the pushforward measure.

DEFINITION 2.3. The DTM-signature barycenter s̄h(�n) to �n ∈P(Pn(X )) is de-
fined as the Wasserstein barycenter of the distribution sh(�n) of sh(µn), where µn ∼ �n:

(2.21) s̄h(�n) = arg min
s∈P([0,D(X )])

Es∼sh(�n)

[
W2

2 (s,s)
]
.

As above mentioned, s̄h(�n) exists and is unique. When �n = �̂n is the distribution of
empirical measures obtained from n-samples from a measure µ ∈P(X ), the distribution
sh(�̂n) can be seen as the pushforward by (x1, . . . , xn) 7→ sh

(
1
n

∑n
i=1 δxi

)
of the measure

µ⊗n of an n-sample from µ. In practice, empirical DTM-signatures barycenters are approxi-
mated by a Monte-Carlo procedure, c.f. Section S.4.1 in Brécheteau (2025).

2.2.2. Stability results. Barycenter signatures also inherit the DTM’s stability properties.

PROPOSITION 2.6. If µ,ν ∈P(X ), then,

(2.22) W2(s̄h(�̂n), s̄h(�̂n))≤
(

1 +
1√
h

)
W2(µ,ν).

Moreover, in general, if �n,�n ∈P(Pn(X )), then,

(2.23) W2(s̄h(�n), s̄h(�n))≤
(

1 +
1√
h

)
W1(�n,�n),

whereW1 is computed with respect to the L2-Wasserstein distance on P(X ).

The proof of Proposition 2.6 is available in Section S.5.2.6 in Brécheteau (2025).
Empirical DTM-signature barycenters based on n-samples from a distribution µ ∈P(X )

converge in distribution to the DTM-signature associated to µ, when the sample size n goes
to∞. This convergence is uniform on µ ∈P(X ).
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PROPOSITION 2.7. The barycenter s̄h(�̂n) converges to sh(µ), uniformly on µ ∈
P(X ), in the sense that for p ∈ {1,2} and h ∈ (0,1]:

(2.24) sup
µ∈P(X )

Wp(sh(µ), s̄h(�̂n))→ 0, n→∞.

Moreover, for h ∈ (0,1] and lh > 0.
General case: There exists some nh ∈N and C > 0 that does only depend on the diameter

of X (not on h nor on µ) so that for every n≥ nh:

(2.25) sup
µ∈P(X ), infx∈X dµ,h(x)≥lh

Wp(sh(µ), s̄h(�̂n))≤ C

hlh
√
n

+
C

n
1

4

.

Particular case with finite moment: Let c > 0. For µ ∈P(X ), let Jµ,h be as in Propo-
sition 2.2. Then, there exists some nh ∈N and C > 0 that does only depend on the diameter
of X and on c so that for every n≥ nh:

(2.26) sup
µ∈P(X ), Jµ,h<c, infx∈X dµ,h(x)≥lh

Wp(sh(µ), s̄h(�̂n))≤ C

hlh
√
n
.

Case of the uniform measure µ0: For the uniform measure µ0, we get that for some
constant C > 0, for every n≥ nh:

(2.27) Wp(sh(µ0), s̄h(�̂0,n))≤ C

hdh
√
n
.

These results still hold when we replaceWp(sh(µ), s̄h(�̂n)) by Eµ [Wp(sh(µ̂n), s̄h(�̂n))]
and when we replaceWp(sh(µ0), s̄h(�̂0,n)) by Eµ0

[Wp(sh(µ̂0,n), s̄h(�̂0,n))].

The proof of Proposition 2.7 is available in Section S.5.2.7 in Brécheteau (2025).

2.2.3. Discrimination properties. If the uniform measure is characterized by its DTM-
signatures, according to Proposition 2.3, it follows from convergence of barycenter signatures
in Proposition 2.7 that it is also characterized by its barycenter signatures, for small enough
regularity parameters h and large enough sample sizes n:

COROLLARY 2.1. For every (h0)-homogeneous (for h0 ∈ (l0,1] with l0 as in Proposi-
tion 2.3) compact Polish space (X ,d), the (h0)-uniform measure µ0 is determined by its
barycenter signatures, in the sense that, for s0 = sh(µ0) or s0 = s̄h(�̂0,n), we have that:

(2.28) ∀H ∈ (l0,1],∀µ ∈P(X ),
(
∀h ∈ [0,H], lim

n→∞
W2(s̄h(�̂n), s0) = 0

)
⇔ µ= µ0.

When h ∈ (0,1] and n ∈N are fixed, the question of whether for �n ∈P(Pn(X )) (resp.
µ ∈P(X )) the equality of the barycenter signature s̄h(�n) (resp. s̄h(�̂n)) with s̄h(�̂0,n)
implies that �n = �̂0,n (resp. µ = µ0) is more tricky. For instance, this is false for h ≤ 1

n
since in this case, s̄h(�n) = δ0 for any �n ∈P(Pn(X )). Another example of measures in
P(Pn(X )) with the same barycenter signature are the measure �̂n for ν = δx for some
x ∈X and �n supported on {δx, x ∈X }. Indeed, s̄h(�̂n) = δ0 = s̄h(�n) but �̂n may be
different to �n. Another example of two measures with the same barycenter signature, based
on sample points regularly spaced on geodesics, is given by Example S.2.1 in Brécheteau
(2025).

These examples enhance that the non uniformity of a measure is not necessarily detected
from a barycenter signature with fixed parameters h ∈ (0,1] and n ∈ N∗. However, ac-
cording to the stability of the signature barycenter in Proposition 2.6, for fixed h ∈ (0,1]
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and n ∈ N, any probability measure µ ∈P(X ) close enough (in terms of the Wasser-
stein distance) to a probability measure ν so that s̄h(�̂n) 6= s̄h(�̂0,n) also satisfies that
s̄h(�̂n) 6= s̄h(�̂0,n). A simple example is the case of a measure ν = δx for some x ∈X ,
for which s̄h(�̂n) = δ0 6= s̄h(�̂0,n). As well, any probability measure �n ∈P(Pn(X ))
close enough to a probability measure �n ∈P(Pn(X )) so that s̄h(�n) 6= s̄h(�̂0,n) also
satisfies that s̄h(�̂n) 6= s̄h(�̂0,n). A simple example is the case of a measure �n supported
on {δx, x ∈X }, for which again, s̄h(�n) = δ0 6= s̄h(�̂0,n). Moreover, on sets of measures
P(δ)(X ) = {µ ∈P(X ),W2 (sh(µ), sh(µ0))> δ} for some δ > 0, detection of the uni-
form measure can be done, for a fixed parameter h ∈ (0,1] and for every sample size larger
than some N ∈N∗ that does not depend on the measure in P(δ):

(2.29) ∀h ∈ (0,1], ∃N ∈N∗, ∀n≥N, ∀µ ∈P(δ)(X ), s̄h(�̂n) 6= s̄h(�̂0,n).

This follows directly from the uniform convergence over P(X ) of the barycenter signa-
ture to the sampling signature, given by Proposition 2.7. This result applies to alternatives
with support different to X detailed in Section S.2.1 in Brécheteau (2025), as well as with
measures with positively lower-bounded density with respect to µ0, in Proposition 2.5.

Finally, we provide a non trivial computation of the distance between two barycenter sig-
natures, for �̂0,n and a mixture involving �̂0,n.

PROPOSITION 2.8. Let h ∈ [0,1], let �l,n = l�1,n + (1 − l)�̂0,n be a mixture of two
probability distributions on P(Pn(X )): some probability distribution �1,n ∈P(Pn(X ))
with probability l ∈ (0,1) and the distribution of an i.i.d. n-sample from µ0 with probability
1− l. Then,

(2.30) W2(s̄h(�l,n), s̄h(�̂0,n)) = lW2(s̄h(�1,n), s̄h(�̂0,n)).

In Proposition 2.8, the distance between the two barycenters W2(s̄h(�1,n), s̄h(�̂0,n)) is
nonzero for instance when �1,n is a Dirac mass on 1

n

∑n
i=1 δxi for fixed x1, . . . , xn ∈X

satisfying sh
(

1
n

∑n
i=1 δxi

)
6= s̄h(�̂0,n). This occurs when h > 1

n , for the unit circle X = S1

and x1, . . . , xn a regular grid on X . Indeed, in this case, sh
(

1
n

∑n
i=1 δxi

)
is a Dirac mass,

unlike s̄h(�̂0,n). The proof of Proposition 2.8 is available in Section S.5.2.8 in Brécheteau
(2025).

2.3. Computation of signatures on the unit circle S1. In this section, we compute the
sampling signatures sh(µ0) for the uniform measure µ0 on S1. We plot the quantile functions
of these signatures, barycenter signatures s̄h(�̂0,n) as well as several empirical signatures
sh(µ̂0,n) based on n-samples from µ0, in Figure 1, with parameters n ∈ {20,50,100,1000}
and h ∈ {0.1,0.2,0.3,0.4,0.5}. The sampling (true) signature sh(µ0) is a Dirac mass δdh . Its
quantile function is a line with ordinate dh = πh/

√
3, see Figure 1 (left).

FIG 1. Signatures and barycenter signatures for the unit circle S1
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We observe the convergence of the barycenter signatures s̄h(�̂0,n) to sh(µ0) when the
sample size goes to infinity in Figure 1 (left). We also observe a reduction of the variance
of the empirical signatures sh(µ̂0,n), when the sample size n goes to infinity, in Figure 1
(middle, right).

The formula for dh follows from the fact that for x ∈ S1 and r ∈ [0, π], µ0(Bx,r) = r/π.
So, δµ0,h(x) = hπ and d2

h = d2
µ0,h

(x) = π2h2/3, according to (2.1). Additional computations
of sampling signatures for the sphere S2, the flat torus T2 and the Bolza surface B are given
in Section S.2.2 in Brécheteau (2025). A remark is that for 1-dimensional spaces such as S1,
dh is of order h, whereas for surfaces such as S2, T2 and B, dh is of order

√
h.

3. Statistical tests for uniformity.

3.1. Definition of two families of statistical tests. In this section, given a random distribu-
tion µn = 1

n

∑n
i=1 δXi with distribution �n on Pn(X ), we define two families of statistical

tests (φhom
n,h )0<h<1 and (φiid

n,h)0<h<1, of the null hypothesis

H0 : �n = �̂0,n,

when X1, . . . ,Xn is an i.i.d. n-sample from µ0, against the alternative hypothesis

H1 : �n 6= �̂0,n.

In the sequel we may consider alternatives based on distance to the true signature sh(µ0),
to the barycenter signature s̄h(�̂0,n), or even alternatives based on median signatures. A
median signature s̄h,1(�n) of �n ∈P(Pn(X )) is defined as a Wasserstein median (Carlier,
Chenchene and Eichinger, 2023, Section 3.1) of the distribution sh(µn) for µn ∼ �n:

(3.1) s̄h,1(�n) ∈ arg min
s∈P([0,D(X )])

Eµn∼�n [W1(s, sh(µn))] .

Additional details on median signatures are given in Section S.2.3 of Brécheteau (2025).
We may consider global alternatives on P(Pn(X )). Let (cn)n∈N and (εn)n∈N be two

sequences of positive real numbers, with (εn)n∈N converging to 0, wet set:
(3.2)
H1(�̂0,n,W1, h, εn, cn) = {�n ∈P(Pn(X )) | W1(s̄h,1(�n), s̄h,1(�̂0,n))≥ cn, V1,h(�n)≤ εn},

(3.3)
H1(�̂0,n,W2, h, εn, cn) = {�n ∈P(Pn(X )) | W2(s̄h(�n), s̄h(�̂0,n))≥ cn, V2,h(�n)≤ εn},

for V1,h(�n) =Eµn∼�n [W1(s̄h,1(�n), sh(µn))] and V2,h(�n) =Eµn∼�n [W2(s̄h(�n), sh(µn))].
We may also consider alternatives on P(X ), when the observations are assumed to be

i.i.d. samples. For lh > 0, and a sequence of positive real numbers (cn)n∈N, we set:

H1(µ0,W1, lh, cn) = {�n ∈P(Pn(X )) | �n = �̂n for some µ ∈P(X ) s.t.

W1(sh(µ0), sh(µ))≥ cn, inf
x∈Supp(µ)

{dµ,h(x)} ≥ lh},(3.4)

H1(µ0,W2, lh, cn) = {�n ∈P(Pn(X )) | �n = �̂n for some µ ∈P(X ) s.t.

W2(sh(µ0), sh(µ))≥ cn, inf
x∈Supp(µ)

{dµ,h(x)} ≥ lh},(3.5)

H1(µ0,W2, lh, cJ , cn) = {�n ∈P(Pn(X )) | �n = �̂n for some µ ∈P(X ) s.t.

W2(sh(µ0), sh(µ))≥ cn, inf
x∈Supp(µ)

{dµ,h(x)} ≥ lh, Jµ,h ≤ cJ},(3.6)
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where Jµ,h is defined in (2.16).
In Section 4.3, we will also investivate the discordant behaviours of the two families of

statistical tests under homogeneous alternatives such as measures supported on regular grids.
The tests (φhom

n,h )0<h<1 will tend to never reject H0, whereas the tests (φiid
n,h)0<h<1 will tend

to always reject H0.

3.1.1. A family of statistical tests of homogeneity of the sample. Given a random proba-
bility distribution µn ∼ �n in Pn(X ), we define the test statistic as:

(3.7) Thom
n,h =W1(sh(µn), sh(µ0)),

and the test as:

(3.8) φhom
n,h = 1Thom

n,h >qhom
1−α,n,h

,

where qhom
1−α,n,h is the 1− α-quantile of Thom

n,h when �n = �̂0,n, that is, such that:

(3.9) qhom
1−α,n,h = inf

{
c ∈R, Pµ0

(
Thom
n,h ≤ c

)
≥ 1− α

}
.

3.1.2. A family of statistical tests of homogeneity and independence. Given a random
probability distribution µn ∼ �n in Pn(X ), we define the test statistic as:

(3.10) Tiid
n,h =W2(sh(µn), s̄h(�̂0,n)),

where s̄h(�̂0,n) is the empirical DTM-signature barycenter, defined in Section 2.2, and the
test as

(3.11) φiid
n,h = 1Tiid

n,h>qiid
1−α,n,h

,

where qiid
1−α,n,h is the 1− α-quantile of Tiid

n,h when �n = �̂0,n, that is, such that:

(3.12) qiid
1−α,n,h = inf

{
c ∈R, Pµ0

(
Tiid
n,h ≤ c

)
≥ 1− α

}
.

3.2. Consistency and separation rates for the tests. A statistical test φ = φ(µn) is a
{0,1}-valued random variable, that is a measurable function of the uniform measure on n
X -valued observations, µn ∈Pn(X ). Based on these observations, the test φ provides the
decision either of rejecting H0 (φ= 1) or of not rejecting H0 (φ= 0). The performance of a
statistical test φ is measured in terms of its type I error:

(3.13) αn(φ) =P�̂0,n
(φ= 1).

This type I error is usually fixed to be smaller than α ∈ (0,1) (for instance α= 5%). A test is
of level α if its type I error is upper bounded by α. The type II error, defined below, measures
the ability of the test to detect the alternatives:

(3.14) βn(φ, params) = sup
�n∈H1(params)

P�n(φ= 0).

Following Ingster (1993); Faÿ et al. (2013) framework for the asymptotic theory of mini-
max tests, we define the separation rate as a sequence (rn)n∈N satisfying both, for H1(cn) =
{�n ∈P(Pn(X )), d(�n, �̂0,n)> cn} for some cn > 0 and some pseudo-distance d:

• For every sequence (r′n)n∈N such that limn→∞ r
′
n/rn = 0:

(3.15) lim inf
n→∞

inf
φ

{
αn(φ) + βn(φ, r′n)

}
= 1,

where the infimum if taken over every {0,1}-valued measurable function of µn, φ.
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• For every α,β > 0, there exists C > 0 and a test φ∗ such that:

(3.16) lim sup
n→∞

αn(φ∗)≤ α and lim sup
n→∞

βn(φ∗,Crn)≤ β.

The first condition states that for rates faster than rn, no test can perform better than a
blind test for which the sum of the two risks is one. The second condition states that the test
φ∗ is efficient for this separation rate in the sense that the sum of the two risks can be made
arbitrarily small. The rate rn = n−1/2 is the usual rate in the regular parametric setting. In the
sequel, we prove in Theorem 3.3 that no test can have a separation rate faster than n−1 for
hypothesis H0, against alternatives based on i.i.d. samples. In Theorem 3.2, we prove that our
two families of tests (φhom

n,h )h∈(0,1] and (φiid
n,h)h∈(0,1] have a separation rate of at most n−1/2

(or n−1/4) under some general alternatives.

3.2.1. Consistency. For every h ∈ (0,1], the tests (φhom
n,h )n∈N and (φiid

n,h)n∈N are asymp-
totically consistent, in the sense that the power converges uniformly to 1, under any alterna-
tive defined in Section 3.1 for a sequence (cn)n∈N constant, equal to some value c> 0.

THEOREM 3.1. Let h ∈ (0,1]. Let (Tn,h,q) denote (Thom
n,h ,q

hom
1−α,n,h) or (Tiid

n,h,q
iid
1−α,n,h).

For every c> 0, and every sequence of positive real numbers (εn)n∈N converging to 0,

(3.17) lim
n→∞

inf
�n∈P(Pn(X )),W2(s̄h(�n),s̄h(�̂0,n))>c,V2,h(�n)≤εn

P�n(Tn,h > q) = 1,

where V2,h(�n) is defined in Section 3.1.
More generally, if (�n)n∈N is a sequence in P(Pn(X )) so that W2(s̄h(�n), sh(µn))

converges in probability to 0, and so that W2(s̄h(�n), s̄h(�̂0,n)) > c for every n ∈N, then
the power (P�n(Tn,h > q))n∈N converges to 1, when n goes to∞.

Consequently, for every c> 0,

(3.18) lim
n→∞

inf
µ∈P(X ),W1(sh(µ),sh(µ0))>c

Pµ(Tn,h > q) = 1.

Moreover, for parameters h ∈H (X ), for every c> 0,

(3.19) lim
n→∞

inf
µ∈P(X ),W2(µ,µ0)>c

Pµ(Tn,h > q) = 1,

where H (X ) is defined as the set of parameters h that characterise the uniform distribution:

(3.20) H (X ) := {h ∈ [0,1], ∀µ ∈P(X ), sh(µ) = sh(µ0)⇒ µ= µ0}.

The proof of Theorem 3.1 is available in Section S.5.3.1 in Brécheteau (2025).
The asymptotic consistency under the same kind of alternatives as in (3.19) has been

proven in (Hallin, Mordant and Segers, 2021, Proposition 3) for their test based on the
Wasserstein distance, on Rd.

The consistency given by (3.18) is a direct consequence of the consistency given by
(3.17). Indeed, the measures (�̂n)n∈N defined from µ ∈ P(X ) satisfy the assumption
that V2,h(�̂n)→ 0, n→∞, uniformly on µ ∈P(X ), according to Proposition 2.1, The-
orem 1.1, and to the convergence of barycenter signatures to the sampling signatures, uni-
formly on µ ∈P(X ), according to Proposition 2.7. The assumption V2,h(�n)→ 0, n→∞
is trivially satisfied for �n supported on a subset of measures in Pn(X ) with the same
signature, since then, V2,h(�n) = 0. For instance, this occurs for �n = δδx , �n = αδδx +
(1 − α)δδy for some x, y ∈ X and α > 0, or �n = αδµn + (1 − α)δφ#µn

for some iso-
morphism φ of X (i.e. so that d(φ(x), φ(y)) = d(x, y) for every x, y ∈ X ) and some
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fixed measure µn ∈ Pn(X ). More generally, according to Definition 2.3 and Proposi-
tion 2.1, the assumption V2,h(�n) → 0, n → ∞ is satisfied for sequences of measures
(�n)n∈N with support with a Wasserstein diameter supµn,νn∈Supp(�n)W2(µn, νn) converg-
ing to zero. However, the assumption V2,h(�n)→ 0, n→∞ is not always satisfied, and
when this assumption is not satisfied, the power may not converge to 1, so that the con-
vergence in (3.17) does not hold. For instance, for �n = 1

2δµx + 1
2 �̂0,n for some x ∈X ,

we get that V2,h(�n) ≥ 1
2W2(δ0, s̄h(�n)) = 1

4W2(δ0, s̄h(�̂0,n))→n→∞
dh
4 > 0, where we

recall that sh(µ0) = δdh . Moreover, despite limn→∞W2(s̄h(�̂0,n), s̄h(�n)) = dh
2 > 0 ac-

cording to Proposition 2.8, we get that P�n(Tn,h > q) 9n→∞ 1 since for every n ∈ N,
P�n(Tn,h > q)≤Pµn∼�n(µn = δx) +Pµn∼�n(µn 6= δx)Pµn∼�n(Tn,h > q|µn 6= δx), and
therefore, lim supn→∞P�n(Tn,h > q) ≤ 1

2 + α
2 = 1+α

2 < 1, for a continuous space X so
that Pµ0

(Tn,h > q) = α.

3.2.2. An upper bound on the separation rate for general alternatives. The 1 − α-
quantile q1−α,n,h (qhom

1−α,n,h resp. qiid
1−α,n,h) of the test statistic Tn,h (Thom

n,h resp. Tiid
n,h) under

the null hypothesis satisfies for some constant C > 0:

(3.21) ∀h ∈ (0,1], ∀α> 0, ∃nh ∈N, ∀n≥ nh, q1−α,n,h ≤
C

hdhα
√
n
,

where dh is defined in (2.5). This is a consequence of Proposition 2.2, (2.18) for qhom
1−α,n,h,

of Proposition 2.7, (2.27) for qiid
1−α,n,h, and of the Markov inequality. As a consequence,

we prove in the following Theorem 3.2 that the statistical test is powerful at a parametric
separation rate under mild assumptions:

THEOREM 3.2. For every h ∈ (0,1], for every lh > 0, cJ > 0, r ≥ 2, ε > 0, for
(φn,h,Tn,h,q1−α,n) equal either to (φhom

n,h ,T
hom
n,h ,q

hom
1−α,n,h) or to (φiid

n,h,T
iid
n,h,q

iid
1−α,n,h):

(3.22) ∀α,β > 0, ∃C > 0, ∀c≥C, lim sup
n→∞

αn(φn,h) + βn(φn,h, crn)≤ α+ β,

where αn(φn,h) = Pµ0
(Tn,h > q1−α,n) and βn(φn,h, crn) = sup�n∈H1(crn)P�n(Tn,h ≤

q1−α,n) is defined for several alternatives H1(crn):

1. H1

(
�̂0,n,W1, h, εn

− 1

2 , cn−
1

2

)
, for φn,h =φhom

n,h , with rn = n−
1

2 ,

2. H1

(
�̂0,n,W2, h, εn

− 1

r , cn−
1

r

)
, for φn,h =φiid

n,h, with rn = n−
1

r ,

3. H1

(
µ0,W1, lh, cn

− 1

2

)
, for φn,h =φhom

n,h , with rn = n−
1

2 ,

4. H1

(
µ0,W2, lh, cn

− 1

4

)
, for φn,h =φiid

n,h, with rn = n−
1

4 ,

5. H1

(
µ0,W2, lh, cJ , cn

− 1

2

)
, for φn,h =φiid

n,h, with rn = n−
1

2 ,

where all alternatives are defined in Section 3.1.

The proof of Theorem 3.2 is available in Section S.5.3.2 in Brécheteau (2025).

3.2.3. A lower bound on the separation rate for i.i.d. alternatives. The following Theo-
rem 3.3 states that no test for H0 against i.i.d. alternatives have a separation rate faster than
n−1.

THEOREM 3.3. For every h ∈ (0,1], for every sequence of {0,1}-valued measurable
functions (φn)n∈N on Pn(X ):

∀γ ∈ (0,1), ∃C > 0,∀c≤C, lim inf
n→∞

αn(φn) + βn(φn, c)≥ 1− γ,
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where αn(φn) =P�̂0,n
(φn(µ̂0,n) = 0) and where, for p ∈ {1,2},

βn(φn, c) = sup
�̂n∈P(Pn(X )),Wp(sh(µ0),sh(µ))≥ c

n

Pµ̂n∼�̂n(φn(µ̂n) = 1).

The proof of Theorem 3.3 is available in Section S.5.3.3 in Brécheteau (2025). It follows
the proofs arguments for Theorem 1 in Lacour and Pham Ngoc (2014), based on Ingster
(1993); Tsybakov (2009).

4. Numerical illustrations. In this part, we numerically investigate the performance
of our two families of tests. The tests are implemented in the Julia package Brécheteau
(2024). The inclusion of R and Python functions is done with the Julia packages RCall
and PyCall. The numerical implementations specific to this paper are done in Jupyter note-
books, in the examples file of the Julia package Brécheteau (2024).

In Section 4.1, we start with a discussion about the selection of the regularity param-
eter h for our tests (φiid

n,h)0≤h≤1. In Section 4.2, we compare our tests (φiid
n,h)0≤h≤1 and

(φhom
n,h )0≤h≤1 to some tests available in the litterature for the circle S1, the sphere S2, the flat

torus T2 and the Grassmannian G(2,4), for i.i.d. samples. In particular, the numerical illus-
trations enhance that our tests almost behave as the best tests for h close to 1 for unimodal
alternatives, whereas our tests significantly outperform existing tests of the litterature for h
close to 0 for balanced multimodal alternatives. In Section 4.3, we investigate the opposite
behaviour of the two families of tests (φhom

n,h )0≤h≤1 and (φiid
n,h)0≤h≤1 on samples of depen-

dent points, generated from a regular grid, with noise. In particular, for a small amount of
noise, the tests (φhom

n,h )0≤h≤1 never reject H0, since the points are uniformly spread on the
space, whereas the tests (φiid

n,h)0≤h≤1 always reject H0, since the data points are dependent.
Finally, in Section 4.4, we propose an application of our statistical tests to shape analysis. Us-
ing the procedure of Buet, Leonardi and Masnou to approximate normal vectors or tangent
spaces of surfaces and curves, we test uniformity of the distribution of the normal vectors and
of the tangent spaces (in S2 and G(2,3)) of the sphere and the Bunny of Stanford, two sur-
faces in R3. This method based on (barycenters of) DTM signatures of normal and tangent
spaces distributions is a successful and promising attempt to compare shapes. In Section 4.4
of Brécheteau (2025), we also consider shapes in R2 and in R4.

4.1. Selection of the regularity parameter: multiple testing procedures and aggregation of
tests. Each test defined in Section 3.1 test H0“�n = �̂0,n” against the alternative H1“�n 6=
�̂0,n”. More specifically, tests φh are powerful against alternatives of type H1,h“sh(µ) 6=
sh(µ0)”. Since µ0 is determined by the whole family of signatures (sh(µ0))h∈(0,1) according
to Proposition 2.3 and by continuity of h 7→ sh(µ) as a consequence of the continuity of
h 7→ dµ,h defined in (2.1), it would make sense to consider a grid of regularity parameters
(hi)i∈I and to reject H0 if one of the tests (φhi)i∈I rejects H0. Such a procedure would
provide an adaptative test of uniformity that would adapt to any alternatives of H0. Intuitively,
by choosing a small parameter hi, we aim at detecting local variations of the density, whereas
with large parameters hi, we aim at detecting lack of global symmetry in the density. This
kind of behaviour was noticed in Gretton et al. (2012) for kernel density-based statistical
two-sample testing. The critical values should then be slightly modified to keep a test with
the correct level, this is the principle of the Bonferroni and Benjamini-Hochberg multiple
testing procedures. We implement both of these procedures, as well as the aggregation of tests
procedure in Schrab et al. (2023); Fromont and Laurent (2006) that selects a single parameter
hi in (hi)i∈I based on all test statistics. All these methods are recalled in Brécheteau (2025),
in Section S.3.1.1. We also implement a new aggregation method that we detail below.
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4.1.1. Presentation of the new alternative aggregation of tests procedure. Let α ∈ (0,1)
be the nominal level. We first select the parameter hi0 that is most likely to provide the
higgest power, that is, the parameter h for which the p-value of the test is the smallest. Then,
for the test to have the proper nominal level α, we compare the statistic Tn,hi0

to the quan-
tile of Tn,hi0

conditionally to the selection of i0, under the null hypothesis, as follows. Let(
pobsn,hi =P�̂0,n

(
Tn,hi >Tobs

n,hi

))
i∈I

be the p-values of a family of tests (φn,hi)i∈I with ob-

served statistics
(
Tobs
n,hi

)
i∈I

based on data. Let i0 = arg mini∈I p
obs
n,hi

. We define the adaptive

test φn,α = 1Tn,hi0
>q1−α,n,hi0 |i0

, where q1−α,n,hi0 |i0 is the 1− α quantile of the distribution
of Tn,hi0

conditionally to arg mini∈I pn,hi = i0.

4.1.2. Comparison of the methods to select the best parameters. We apply the clas-
sical method of aggregation, the alternative method of aggregation defined above, the
Benjamini-Hochberg procedure and the Bonferroni procedure to select parameters hi in
(hi)i∈I =

(
i

10

)
1≤i≤10

. For several sampling models on S1, we generated 10000 samples of
size n= 100. For the two first methods, we count the proportion of selection of each param-
eter (hi)i∈I . For the last two procedures, since several parameters can be selected at the same
time (the hi such that the i-th test rejects H0), for each parameter hi, we count the number of
rejections, and we divide these numbers by the total number of rejections, c.f. Figure 2.

FIG 2. Selection of the parameters h.

We consider the following sampling methods on S1: the von Mises-Fisher distribution
with parameter κ= 0.5 and a mixture of 4 von Mises-Fisher distributions with centers on a
regular polytope, with parameter κ= 10. The quantiles of the tests are computed by a Monte-
Carlo procedure with 10000 samples of size n = 100. The powers estimations for the four
procedures are available in Table 1.

Method Class. Aggregation Alt. Aggregation Benjamini-Hochberg Bonferroni
Uniform 0.0528 0.0533 0.0361 0.0111

von Mises-Fisher 0.8531 0.8337 0.8447 0.6649
Mixture von Mises-Fisher 0.9385 0.9331 0.7771 0.7512

TABLE 1
Power comparison for tests of nominal level 0.05, on the circle S1.

We observe that the power of the classical aggregation method and the alternative ag-
gregation method are similar. The classical aggregation method is yet faster to calibrate.
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Notice that if the Benjamini-Hochberg is not proved correct in this context since p-values
are not independent, its type I error is lower than 5%, therefore it is valid on our examples.
The Benjamini-Hochberg procedure and the Bonferroni procedure lead to a type I error far
smaller than 5%. Therefore, such procedures have a lower power. Such methods will not be
used for testing uniformity, but only for parameters selection. Moreover, according to Figure
2 these methods confirm that on S1 small parameters hi lead to more powerful tests to detect
mixtures of von Mises-Fisher distributions, whereas large parameters hi lead to more per-
formant tests to detect single von Mises-Fisher alternatives. In Brécheteau (2025), in Section
S.3.1.2, we consider the same numerical procedures on S2, T2 and B, and observe the same
behaviours.

4.2. Comparison to classical tests of uniformity. In the litterature, numerous tests of uni-
formity have been designed, for specific homogeneous spaces, the circle, the sphere, the flat
torus and the Grassmannian. In this section, we compare the performance of our tests to some
of these classical tests.

4.2.1. On the circle S1 and on the sphere S2. We compare our tests (φhom
n,h )0≤h≤1

(homogen) and (φiid
n,h)0≤h≤1(iidness), for parameters h ∈ [0.1,0.2,0.5,1], as well as the

alternative aggregation methods (hom_select and iid_select), to the tests of unifor-
mity available in the R package sphunif in García-Portugués and Verdebout (2024) and
described in the overview García-Portugués and Verdebout (2018).

For the unit circle S1, we consider samples of size n = 100 from the von Mises-Fisher
distribution with parameter κ = 0.5, from a mixture of von Mises-Fisher distributions with
parameter κ= 10, with 4 centers on a regular polytope and from the uniform distribution. For
the sphere S2, we consider samples of size n= 100 from the von Mises-Fisher distribution
with parameter κ= 0.5, from a mixture of von Mises-Fisher distributions with parameter κ=
10, with 6 centers on a regular polytope and from the uniform distribution. In Figure 3, we
compute the percentage of rejection of H0 at the 5% nominal level in 1000 tests replications
for samples of size n = 100. As expected, for uniformly distributed samples, the power is
approximatively equal to 5%, meaning that all of the tests have the correct nominal level.

FIG 3. Powers on the circle (top) and on the sphere (bottom)

Our methods for large parameter h have the same performances as the best tests for uni-
modal alternatives. Whereas our methods for small parameter h strongly outperfrom existing
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methods for multimodal alternatives. This is particularly the case for instance for the mixture
of 6 von Mises-Fisher distributions alternative. Some of our tests have a power equal to 1,
whereas other tests have a power inferior to 0.7). Our alternative aggregation procedure (2
right-columns) have a power almost as good as the tests with the best parameters in both
contexts, and still have the correct level.

In Brécheteau (2025), in Figure S.7, we also compute the p-values of the tests on regular
samples on S1 and S2. Roughly, all tests, including our tests φhom

n,h , have a p-value equal to 1,
meaning that the hypothesis of uniformity is strongly accepted, except for our tests φiid

n,h (and
for S1, Log_gasps and Num_uncover) for which the p-value is 0, or almost 0, meaning
that the assumption of uniformity is strongly rejected. Contrary to most of the other tests,
our tests φiid

n,h detect non iidness. In Section 4.3, we investigate more deeply the difference
of behaviour of our two families of tests.

4.2.2. On the flat torus T2. We compare our tests (φiid
n,h)0≤h≤1 with parameters h ∈

[0.1,0.3,0.5,0.7,0.9], to three existing tests of uniformity. First, we compare to the two-
dimensional extension of the Kolmogorov-Smirnov two-sample test in Fasano and Frances-
chini (1987), implemented in the R package fasano.franceschini.test, Puritz
(2023). We consider the two-sample test and compare to a uniformly distributed sam-
ple of size 1000. Then, we compare to the transport-based test of uniformity, based on
the L2-Wasserstein disance, of Hallin, Mordant and Segers (2021), using the R package
transport. Finally, we compare to the Sobolev test of type Rayleigh, as described in
Jupp (2009), for k = 1.

We consider mixtures of normal distributions, with centers in a regular grid of s × s
points with s ∈ {1,2,3}, with standard deviations in [0.02,0.05,0.1,0.15,0.2,0.25] (in
[0.15,0.3,0.5,0.7,1] for the unimodal distribution). We compute the percentage of rejection
of H0 at the 5% nominal level in 100 tests replications for samples of size n= 10. The powers
are displayed in Figure 4. Our tests perform well for unimodal alternatives, and outperform
existing procedures for multimodal alternatives.

FIG 4. Power comparison, flat torus T2

4.2.3. On the Grassmannian G(2,4). We compare our tests (φiid
n,h)0≤h≤1 with param-

eters h ∈ [0.1,0.3,0.5,0.7,0.9] to the function grassmann.utest of the R package
Riemann, that test uniformity of samples in the Grassmannian G(2,4). This method is
based on the Bingham’s test, Chikuse (2003); Mardia and Jupp (2000).

4.2.3.1. Method 1:. For each standard deviation σ in [0,0.5, . . . ,4.5,5], we generate 1000
samples of size n = 100, where each sample point is given by the two first eigenvectors of
the covariance matrix of 50-samples (si +Xi)1≤i≤50, where (si)1≤i≤50 ∈ (R4)50 are the 4
first coordinates of the 50 first points of the iris R dataset, and (Xi)1≤i≤50 are i.i.d. 50-
samples with normal distribution N (0, σ2). Notice that for small values of σ, the distribution
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of the sample points will not be uniform on G(2,4) since they will all be close to the two
first eigenvectors of the iris R dataset, whereas the signal of the data set gets erased by the
noise when σ gets large. Therefore, we expect a power close to 1 for small values of σ, and
a power close to 0.05 (the level of the test) for larger values of σ.

4.2.3.2. Method 2:. For each parameter σ in [0.01,0.03,0.05,0.07,0.1,0.3,0.5,1], we con-
sider a mixture of 6 normal distributions in G(2,4) with centers given by (e1, e2), (e1, e3),
(e1, e4), (e2, e3), (e2, e4), (e3, e4) (for e1, e2, e3, e4, the vectors of the canonical basis),
and with standard deviation σ. The probability of each component is given by 1

6 . Sam-
ples are generated with the package Distribution.jl, in particular, with the functions
Grassmann, rand to generate random normal vectors on tangent spaces, and with the
exponential function exp. Notice that the largest the standard deviation is, the closest the
distribution is to the uniform distribution.

FIG 5. Power comparison, GrassmannianG(2,4) manifold

According to Figure 5, our tests of iidness are almost as performant as the function
grassmann.utest of the R package Riemann, for the unimodal alternative, but com-
pletely outperform the function grassmann.utest for the multimodal alternative. As
expected, for the first case, the best parameters h are the largest, whereas for the second case,
the best parameters h are the smallest, since they catch local variations.

4.3. Investigating the power of tests for non i.i.d. samples. Tests of homogeneity
(φhom

n,h )h have a null power under alternatives �n supported on the subset of Pn(X ), which
signatures are as close as possible to sh(µ0):

PROPOSITION 4.1. Let h ∈ ( 1
n ,1]. Assume that X is not finite. Let Popt

n,h(X ) be the
set of measures supported on n points, which signature is the closest to the signature of the
uniform measure µ0:

Popt
n,h(X ) = arg min

{µn∈Pn(X )}
W1 (sh(µn), sh(µ0)) .

The set Popt
n,h(X ) is not empty. Moreover, for any measure �n supported on Popt

n,h(X ), the
power of the test φhom

n,h is equal to 0:

P�n(Thom
n,h > qhom

1−α,n,h) = 0.

The proof of Proposition 4.1 is available in Section S.5.3.4. A direct consequence of
Proposition 4.1 and Proposition 2.1 is that any measure �n ∈P(Pn(X )), close enough to
Popt
n,h(X ), in terms ofW1,W2

, has a power lower than α. Surprisingly, supports of measures
in Popt

n,h(X ) are not necessarily regular grids. For instance, for the circle S1, n= 4 and h=
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1
2 , we get that Popt

4, 1
2

(S1) =
{

1
4

∑4
i=1 δxi , ∀i ∈ {1, . . . ,4}, minj∈{1,...,4}\{i} d(xi, xj) = π√

6

}
,

since for such measures µ4 ∈Popt
4, 1

2

(S1), s 1

2
(µ0) = s 1

2
(µ4) = δ π√

12
. Although the signature

of the grid sh (µn) with µn = 1
n

∑n
k=1 δ(cos(2π k

n),sin(2π k
n)), is at a distance to the signature

of µ0, of order 1
n : W1 (sh (µn) , sh(µ0)) ≤W2 (sh (µn) , sh(µ0)) ≤ 1√

h
W2(µn, µ0) ≤ 1√

h
π
n ,

using Proposition 2.1 and considering the transport plan that sends each Voronoi cells to
the center, in the decomposition of S1 into Voronoi cells with centers in Supp(µn). For S1

at least, signatures on uniform grids seem to approach quite fast the true signature sh(µ0),
in comparison to empirical signatures that we expect to approximate the true signature at a
parametric rate. Therefore, we expect the signature of the grid to be closer to the signature of
the uniform distribution than to the barycenter signature, compared to an empirical signature.
Therefore, we expect that tests φiid

n,h reject the null hypothesis H0 under such an alternative.
This intuition is confirmed below, numerically, for S2.

We consider a grid on the sphere (s1, . . . , s98), of size 98, based on Buet, Leonardi and
Masnou implementation. For each parameter κ in [0,0.5,1,3,5,10,20,50,100,200,500], we
generate 10000 samples of size 98, based on the following proceduce : (X1,κ, . . . ,X98,κ)
are independent random variables, with, for 1 ≤ j ≤ 98, Xj,κ generated according to the
von Mises-Fisher distribution on the sphere, with parameter κ and center sj . For κ = 0,
(X1,κ, . . . ,X98,κ) is a sample from the uniform distribution on the sphere, while for κ= +∞,
(X1,κ, . . . ,X98,κ) = (s1, . . . , s98) coincides with the grid.

We compare the power of the two families of tests in Figure 6. The tests have a level
α= 0.05. Their quantiles are estimated by a Monte-Carlo procedure, after 10000 replications.
The two families of tests start with a power of 0.05, which corresponds to the level of the tests.
The tests of iidness have a power that converges to 1, while the tests of homogeneity have a
power that converges to 0, when κ goes to +∞. Indeed, samples of points will be closer and
closer to a regular grid, therefore we loose independence of sample points (power converges
to 1 for iidness tests), but we improve the homogeneity of the sample, since grids are more
uniformly spread on the sphere than an i.i.d. sample from the uniform distribution (power
converges to 0 for homogeneity tests).

FIG 6. Power comparison of families of tests

4.4. Application to shape analysis. In this section, we consider sets of points on the
sphere (34686 points) from the python notebook Buet, Leonardi and Masnou, and the Stan-
ford bunny (34835 points), from the Stanford University Computer Graphics Laboratory,
http://graphics.stanford.edu/data/3Dscanrep/. To all points, we associate an estimator of the
normal vector (and its opposite) in S2 and of the tangent space in G(2,3), using Buet and
Rumpf (2022); Buet, Leonardi and Masnou (2022) and its Python implementation, in Buet,
Leonardi and Masnou. The samples and distributions of vectors are displayed in Figure 7.

http://graphics.stanford.edu/data/3Dscanrep/
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FIG 7. Point clouds (left) and normal vectors (right)

FIG 8. Distribution of p-values for the iidness tests, normal directions (left), tangent spaces (right)

The density of the normal vectors and of the tangent spaces is uniform for the sphere but
not for the bunny. This is confirmed by Figure 8 where we plot 10000 sorted p-values of
iidness tests based on 100-samples, with parameter h varying in [0.1,0.3,0.5,0.7,0.9]. The
p-values are aligned with the line x 7→ x on [0,1] for the sphere, that illustrates the uniformity
of the measure, unlike for the bunny. Small values of h provide more powerful tests. These
illustrations enhance that the DTM-signatures or barycenter signatures for normal vector
or tangent spaces provide new shape descriptors, and may be used for shape comparison,
clustering, or even for testing equality of shapes, as alternatives to Mémoli (2011); Osada
et al. (2002).

5. Conclusions and Perspectives. In this paper, we have defined two families of statis-
tical tests to test that a sample of n points is uniform on some homogeneous space X . We
provided theoretical results for the consistency of the tests, that come with separation rates.
We illustrated the performance of these tests on simulated samples on the circle, the sphere,
the flat torus, the Grassmannian but also on the Bolza surface, in Brécheteau (2025). We
used classical aggregation of tests procedures and developped a new one, to take advantage
of the best regularity parameter h, depending on the alternative, making the tests adaptative,
despite a slight loss of power. For large parameters, the tests compare to the best tests against
unimodal alternatives, whereas for small parameters, the tests outperform existing tests, for
multimodal alternatives. We also investigated the difference of behaviour of the two tests
under non i.i.d. alternatives.

In a future work, we will use the tests (φiid
n,h)h∈(0,1) to validate new sampling procedures

based on dynamical systems theory to generate samples that behave as i.i.d. uniform samples.
Besides, the test statistics (Thom

n,h )h∈(0,1) can be used to detect samples that are more homo-
geneous than i.i.d. uniform samples, if rejecting when the statistic is small enough. Both
tests could also be used for goodness-of-fit testing, after transporting the sample through
the optimal transport plan to the uniform distribution. Finally, in Section 4.4, we enhanced
the possibility for the statistical tests of uniformity, together with the procedure to estimate
normal vectors and tangent spaces of Buet and Leonardi (2016), to be used to reject uni-
formity of normal vectors or tangent spaces. DTM signatures based on normal vectors or
tangent spaces distributions are actually new shape descriptors that may be used for shape
comparison, clustering or testing.
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