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In this supplement of Brécheteau (2025), we come back to the resuts of
Christensen (1970) relative to the unicity of the uniform measure and to the
determination of measures by its values on balls. Then we provide additional
discriminative results for the DTM-signatures, compute the signature of the
uniform distribution for the torus, the sphere and the Bolza surface and define
and discuss properties of median signatures. We provide additional numeri-
cal illustrations as well as technical details for simulations, including details
on the Monte Carlo estimators of Wasserstein signatures, details on the gen-
eration of samples from the uniform distribution on hyperbolic spaces and
from (mixtures of) normal distributions on general Riemanian manifolds. We
finally give the proofs of the results of the main paper Brécheteau (2025) and
of this supplement.

S.1. On the unicity of the uniform measure and on the determination of measures
by their values on balls. The question to know whether or not measures are determined
by their values on balls is non trivial Christensen (1980). Measures are determined by their
values on balls in Banach spaces Preiss and Tišer (1991) after Hoffmann-Jø rgensen (1975);
Dinger (1986), and more specifically in Euclidean spaces Zelený (2000), and for more gen-
eral spaces Buet and Leonardi (2016), but not on any compact metric space Davies (1971);
Keleti and Preiss (2000). Counter-example in Davies (1971) uses the link with the problem
of finding for every ε, δ > 0, disjointed closed balls S1, . . . , SN with radius not exceeding δ
and such that µ(X \

⋃N
j=1 Sj)< ε.

The unicity of uniform and h0-uniform Borel probability measures, when it exists. This is
given by Theorem S.1.1.

THEOREM S.1.1 (Christensen (1970)). For any compact metric space (X ,d), an h0-
uniform measure µ0, if it exists, is unique. Indeed, for every µ,ν ∈P(X ), if µ and ν coin-
cide on balls, i.e. satisfy (1.1) or (1.2) from Brécheteau (2025) for some h0 > l0, then µ= ν.

Moreover, assuming the existence of an h0-uniform measure µ0, if ν ∈P(X ) is such that
for some sequence (rn)n∈N of R∗+ converging to 0,

(S.1.1) ∀x ∈X , ∀n ∈N, ν(B(x, rn)) = µ0(B(x, rn)),

then, ν = µ0.

The proof of Theorem S.1.1 is available in Section S.6.1.1. This result is a consequence
of the more general result of Christensen (1970), that states that for metric spaces for which
there exists a quasi-uniform probability measure, measures are determined by their values on
balls with radius smaller than a fixed radius. We write the proof when (X ,d) is compact, but
the result of Christensen (1970) is more general. This is Theorem S.1.2.
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DEFINITION S.1.1. A quasi-uniform Borel probability measure µ0 on a compact metric
space (X ,d) is a Borel probability measure so that:

(S.1.2) lim
ε→0

sup
x,y∈X

∣∣∣∣µ0 (B(x, ε))

µ0 (B(y, ε))
− 1

∣∣∣∣= 0.

THEOREM S.1.2 (Christensen (1970)). If (X ,d) is a compact Polish space for which
there exists a quasi-uniform Borel probability measure µ0, then, for every Borel probability
measures µ and ν, for every ε0 > 0,

(S.1.3) µ(B(x, ε)) = ν(B(x, ε)), ∀x ∈X ,∀0< ε < ε0⇒ µ= ν.

The proof of Theorem S.1.2 is inspired from the proof of Theorem S.1.1. It is available in
Section S.6.1.2. Consequently, on such metric spaces, measures with the same DTM func-
tions for every parameter h ∈ [0, h0] for some h0 > 0, coincide.

S.2. Signatures - Supplement.

S.2.1. Additional discriminative properties of DTM-signatures. We consider the set of
values h ∈ [0,1] for which the DTM-signature with parameter h characterises the uniform
distribution,

(S.2.1) H (X ) := {h ∈ [0,1], ∀µ ∈P(X ), sh(µ) = sh(µ0)⇒ µ= µ0}.

In general, for M ⊂P(X ), we define

(S.2.2) H (M ) := {h ∈ [0,1], ∀µ ∈M , sh(µ) = sh(µ0)⇒ µ= µ0},

so that H (X ) = H (P(X )).
Tests for uniformity based on a DTM-signature with parameter h ∈H (X ) or H (M )

are powerful, c.f. Section 3.1.1 in Brécheteau (2025). The set H (M ) is not empty when
M is a set of measures with support different to X , as noticed in Proposition S.2.1 and
Proposition S.2.2. This is also the case for discrete homogeneous compact sets, as noticed
in Proposition S.2.3. However, in this case, the set H (X ) does not coincide with [0,1], as
noticed in Proposition S.2.4.

It means that for measures with support different to X , all DTM-signatures are discrim-
inative, provided that the parameter h is small enough. For discrete spaces, this is also the
case, for parameters h not too small.

Notice that some of these examples are inspired from Brécheteau (2019) that provide ex-
amples for which signatures are discriminative between two different metric measure spaces.

S.2.1.1. On continuous spaces. The DTM signature for small parameters h discriminate
measures with support different to X , from the uniform measure µ0:

PROPOSITION S.2.1. Let ε > 0. For every µ ∈P(X ), if dH(Supp(µ),X )≥ ε, then:

(S.2.3) ∀h≤ h(ε), sh(µ) 6= sh(µ0),

where dH is the Hausdorff distance, so that

(S.2.4) dH(A,X ) = sup
x∈X

inf
y∈A

d(x, y) = sup
x∈X

d(x,A)

and h(ε) = µ0(B(x, ε)).
In particular, H ({µ ∈P(X ), dH(Supp(µ),X )≥ ε)})⊃ [0, h(ε)].
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The proof of Proposition S.2.1 is available in Section S.6.2.1.
More precisely, for a measure with constant density with respect to µ0 on its support, we

get the following lower bound for the distance between its DTM-signature and the DTM-
signature of µ0.

PROPOSITION S.2.2. Let h ∈ (0,1) and l ∈ (0,1). Let µl ∈P(X ) be a Borel probabil-
ity measure supported on Supp(µl) ( X , with density 1

µ0(Supp(µl))
1Supp(µl) = 1

1−l1Supp(µl)

with respect to µ0. Let Al,h :− {x ∈ X | B(x, rh(1−l)) ⊂ Supp(µl)}, with rh(1−l) =
δµ0,h(1−l)(x) for all x ∈X , the radius of a ball with µ0-mass h(1− l), as defined in (2.2).
Then, for dh and dh(1−l) the constant values of the DTM to the uniform measure µ0 with
respective parameters h and h(1− l), as defined in (2.5), we have that

(S.2.5) W1(sh(µl), sh(µ0))≥ 1

1− l
µ0(Al,h)|dh − dh(1−l)| ∼l→0 µ0(Al,h)Chl,

where Ch is a non negative constant that depends on h only, equal to 0 if and only if X is
discrete with h < 1

|X | , and where we recall that µ0(Al,h) ∈ [0,1].

The proof of Proposition S.2.2 is available in Section S.6.2.2.

S.2.1.2. On discrete spaces. In the following, we denote by 0 = d1 ≤ d2 ≤ . . .≤ dN the
sorted distances of a point x ∈X to other points in X . We recall that this sequence does
not depend on x ∈X , as noticed in Section 2.1.1 in Brécheteau (2025). Indeed, since µ0 is
uniform on X :

(S.2.6) ∀x ∈X , µ0(Bx,r1) = µ0({x}) =
1

|X |

for r1 = min{d(x, y), x, y ∈ X , x 6= y}. For every r > r1, µ0(Bx,r) ≥ 2
|X | , so that

d(x,x1(x)) = r1 for every x ∈X . We conclude by induction. In particular, d2 is the minimal
distance between two distinct elements of X and dN = D(X ) is the diameter of X .

PROPOSITION S.2.3. If X is a discrete space with cardinality N , then H (X ) is of
non empty interior. In particular

[
1
N ,

k+1
N

]
⊂H (X ), where k = |{j ∈ {2 . . .N}, dj = d2}|

is the number of points in X \{x} at minimal distance to a point x ∈X .
Moreover, for every h ∈

[
1
N ,

k+1
N

]
,

W1 (sh(µ), sh(µ0))≥ d2

N

∑
x,µ({x})< 1

N

(√
1− µ({x})

h
−
√

1− 1

Nh

)

≥ d2

2Nh
dTV(µ,µ0).

where dTV(µ,µ0) = 1
2

∑
x∈X |µ({x})− µ0({x})| denotes the Total Variation distance be-

tween µ and µ0.
It implies that the L1-Wasserstein distance to the signature of µ0 is lower bounded by

Wasserstein distances to µ0:

(S.2.7) W1 (sh(µ), sh(µ0))≥ d2

2Nhd2
N

W2
2 (µ,µ0)

and

(S.2.8) W1 (sh(µ), sh(µ0))≥ d2

2NhdN
W1(µ,µ0).
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The proof of Proposition S.2.3 is available in Section S.6.2.3.
Note that for discrete spaces, Proposition 2.3 in Brécheteau (2025) is a consequence of

Proposition S.2.3.
DTM-signatures do not characterise uniform distributions for every values of h ∈ [0,1].

PROPOSITION S.2.4. If X is a discrete space with cardinality N , then H (X )c is of
non empty interior. In particular

[
0, 1

N

)
⊂H (X )c.

The proof of Proposition S.2.4 is available in Section S.6.2.4.
We conclude with additional examples on discrete spaces. For a discrete metric space

with cardinality N = 3, symmetry properties imply that the distance to the second and third
nearest neighbour in X are equal: d2 = d3. Therefore, according to Proposition S.2.3 and
Proposition S.2.4, H = [1

3 ,1]. However, when N ≥ 4, H 6= [ 1
N ,1] in general. Indeed, con-

sider the metric space X of cardinality N = 4, so that d2 = d3 = 1 and d4 =
√

2. Consider
the measure µ that puts masses 1

3 ,
1
3 ,

1
6 ,

1
6 to elements of X so that the second and third

nearest neighbours of each point have the same mass. Then, µ satisfies s1(µ) = s1(µ0) = δ1,
since 1

6 + 1
6 +
√

2
2 × 1

3 = 1
3 + 1

3 +
√

2
2 × 1

6 = 1
4 + 1

4 +
√

2
2 × 1

4 = 1 = 12.

S.2.1.3. Example of two different measures with the same barycenter signature. In this
section, we give the example of two different measures based on geodesics that do have the
same non-trivial barycenter signature.

EXAMPLE S.2.1. Let δµx,n and αδµy,n + (1−α)δµz,n be two measures in P(Pn(X )),
for some α ∈ (0,1); where µx,n = 1

n

∑n
i=1 δxi (resp. µy,n = 1

n

∑n
i=1 δyi and µz,n =

1
n

∑n
i=1 δzi ) for (xi)1≤i≤n (resp. (yi)1≤i≤n and (zi)1≤i≤n), n aligned points on a geodesic,

so that two consecutive points are at a distance to each other equal to ε (resp. 1
2αε and

1
2(1−α)ε), and where ε is small enough so that two consecutive points are nearest neigh-
bours. The barycenter signatures coincide for the parameter h= 2

n since dµx,n,h(xi) = 1√
2
ε,

dµy,n,h(xi) = 1√
2

1
2αε and dµz,n,h(xi) = 1√

2
1

2(1−α)ε for every 1 ≤ i ≤ n, so that s̄h(δµx,n) =

sh(µx,n) = δ 1√
2
ε and s̄h(αδµy,n + (1− α)δµz,n) = δα 1√

2

1

2α
ε+(1−α) 1√

2

1

2(1−α)
ε = s̄h(δµx,n).

S.2.2. Signatures computation on classical examples. In this section, we provide exam-
ples of Riemannian manifolds for which an h0-uniform measure µ0 exists. Then, we compute
the DTM-signature to µ0, using (2.1) in Brécheteau (2025). This requires computation of µ0-
measures of balls.

S.2.2.1. Basic definitions on Riemannian manifolds. A Riemannian manifold (M ,G)
with dimension d ∈N∗ is a pair comprising a smooth (connected) d-dimensional differen-
tiable manifold M and a (smooth) Riemannian metric G = (G(x))x∈M . The Riemannian
metric G(x) is defined on the tangent space Tx(M ) and depends (smoothly) on the point
x ∈M . In local coordinates, G(x) = (Gi,j)1≤i,j≤d is a positive-definite symmetric ma-
trix such that if v ∈ Tx(M ) has coordinates v = (vi(x))1≤i≤d, then ‖v‖2x = G(x)(v, v) =∑d

i=1

∑d
j=iGi,jvi(x)vj(x).

A Riemannian manifold is a metric space (X = M ,d) with a metric d called Riemannian
distance. If Γ(M , x, y) = {γ : [0,1] 7→M , piecewise C 1, γ(0) = x, γ(1) = y} denotes the
set of rectifiable paths between x and y in M , if l(γ) =

∫ 1
t=0 ‖γ̇(t)‖γ(t)dt denotes the length
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of a path γ ∈ Γ(M , x, y) (where γ̇(t) is the tangent vector at time t), then, the geodesic
distance d(x, y) is defined as the length of the smallest path (a geodesic path) between x and
y: d(x, y) = infγ∈Γ(M ,x,y) l(γ).

The injectivity radius of (M ,G) is defined as half of the smallest length of a non trivial
path from a point x ∈M to itself: I (M ) = 1

2 infx∈M infγ∈Γ(M ,x,x),γ 6=(t7→x) l(γ). Equiva-
lently, I (M ) is the maximal value r so that, for every point in M , the geodesic ball with
radius r has no double point.

The Riemannian measure is defined in local coordinates as the Borel measure with den-
sity with respect to the Lebesgue measure given by

√
det(G(x)). For compact manifolds,

we renormalise this density so that µ0 is a probability measure. If the Riemannian measure
is always quasi-uniform, in the sense of Definition S.1.1 Christensen (1970), for special ex-
amples of Riemannian manifolds, the Riemanian measure is uniform. This is the case of
connected homogeneous Riemannian manifolds Chavel (2006), that is connected Rieman-
nian manifolds with the property that the group of isometries of (M ,G) acts transitively on
M , that is, if to each x, y ∈M , there exists an isometry φ of (M ,G), such that φ(x) = y.
By isometry of (M ,G), we mean a diffeomorphism φ that is isometric in the sense that
G(x)(v,w) =G(φ(x))(φ∗(v), φ∗(w)), where φ∗ : TM 7→ TM denotes the induced bundle
map (in local coordinates, the Jacobian linear transformation) linear on each fiber. Chavel
(2006) Such an isometry is also an isometry for the geodesic distance d and preserves vol-
umes of balls.

S.2.2.2. Examples of computations of sampling and barycenter signatures. In this sec-
tion, we first display the sampling (true) signatures together with the barycenter signatures
based on Monte-Carlo simulations, for the unit circle S1, the sphere S2, the flat torus T2

and the Bolza surface B. Then, we provide the values of the true signatures for these four
examples.

Quantiles of signatures of µ0, sh(µ0) and of barycenters of signatures, s̄h(�̂0,n), for n ∈
{20,50,100,1000} obtained by Monte-Carlo approximation with 10000 samples (100 for
the Bolza surface), are available in Figure S.1. This figure illustrates the convergence of the
barycenter of signatures to the signature of µ0 when n goes to∞, as noticed in Proposition
2.7 in Brécheteau (2025).

Quantiles of barycenter signatures s̄h(�̂0,n) and of signatures based on 20 n-samples on
the circle, s̄h(µ̂0,n), for n ∈ {20,50,100,1000}, are available in Figure S.2. This figure il-
lustrates how the variance of the quantile signatures around their barycenter decreases when
the sample size n increases, and when the parameter h decreases.

S.2.2.2.1. The circle S1. The circle

S
1
R = {pθ := (R cosθ,R sinθ), θ ∈R}
'R/Z,

with radiusR> 0, equipped with the metricG(pθ)(v,w) =R2vw for every θ ∈R and v,w ∈
R, is an homogeneous Riemannian manifold. For every θ1, θ2 ∈R, an isometry φ of S1

R so
that φ(pθ1) = pθ2 is given by φ(pθ) 7→ pθ+θ2−θ1 . Its geodesic distance is

(S.2.9) d(pθ1 , pθ2) =Rmin(|θ1 − θ2|, |θ1 + 1− θ2|, |θ1 − θ2 − 1|),
for θ1, θ2 ∈ [0,2π]1. Moreover, its Riemannian probability measure is

µ0(B) =
1

2π
Leb({θ ∈ [0,2π], pθ ∈B})

1We consider the three paths t 7→ pt(θ2−θ1)+θ1
, t 7→ pt(θ2−θ1−1)+θ1+1 and t 7→ pt(θ2−θ1+1)+θ1−1.
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FIG S.1. Signatures for µ0 and barycenter signatures

FIG S.2. Barycenter signatures for the circle

for every Borel set B of S1
R, where Leb denotes the Lebesgue measure on R.
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PROPOSITION S.2.5. For every h ∈ [0,1], the radius of a ball with µ0-measure h is

δµ0,h = πRh. Moreover, sh(µ0) = δdh with dh =
√

1
3πRh.

The proof of Proposition S.2.5 is available in Appendix S.6.2.5.

S.2.2.2.2. The sphere S2. The sphere

S
2 = {(x, y, z) ∈R3, x2 + y2 + z2 = 1}

= {pθ,φ := (cosθ, sinθ cosφ, sinθ sinφ), (θ,φ) ∈R2},

in spherical coordinates, equipped with the metric G(pθ,φ)(v,w) = vθwθ + sin2(θ)vφwφ for
every (φ, θ) ∈ R2 and v = (vθ, vφ),w = (wθ,wφ) ∈ R2, is an homogeneous Riemannian
manifold. Isometries are given by rotations, in SO3(R), that act transitively on S2. The
geodesic distance is

(S.2.10) d(pθ1,φ1
, pθ2,φ2

) = arccos(〈pθ1,φ1
, pθ2,φ2

〉),

that is,

(S.2.11) d(pθ1,φ1
, pθ2,φ2

) = arccos (cosθ1 cosθ2 + sinθ1 sinθ2 cos(φ1 − φ2))

for every pairs (θ1, φ1), (θ2, φ2) ∈R2 .2 The Riemannian probability measure is

(S.2.12) µ0(B) =
1

4π

∫ π

θ=0

∫ 2π

φ=0
1B(pθ,φ) sinθdθdφ

for every Borel set B of S2.

PROPOSITION S.2.6. For every h ∈ (0,1], the radius of a ball with µ0-measure h is rh :=
δµ0,h = arccos (1− 2h) if h≤ 1

2 , and rh := δµ0,h = π − arccos(2h− 1) if h≥ 1
2 . Moreover,

sh(µ0) = δdh with

(S.2.13) dh =

√
1

2h

(
−r2

h cos(rh) + 2rh sin(rh) + 2 cos(rh)− 2
)
.

The proof of Proposition S.2.6 is available in Appendix S.6.2.6.

S.2.2.2.3. The flat torus T2. The flat torus

T
2 =R2/Z2

= {p= (x mod 1, y mod 1), (x, y) ∈R2},

equipped with the metric G(p)(v,w) = vxwx + vywy for every p ∈T2 and v = (vx, vy),w =
(wx,wy) ∈R2, is an homogeneous Riemannian manifold. For every p1, p2 ∈T2, an isometry
that sends p1 to p2 is given by φ : p ∈T2 7→ p− p1 + p2. The geodesic distance is given by

d2(p1, p2) = min(|x1 − x2|, |x1 − x2 − 1|, |x1 − x2 + 1|)2

+ min(|y1 − y2|, |y1 − y2 − 1|, |y1 − y2 + 1|)2

2For instance, for θ = π
2 , the geodesic distance is obtained with the path (γt)0≤t≤1 given by γt =

pπ
2
,t(φ2−φ1)+φ1

. Then, ‖γ̇t‖γt = 0 + sin π2 |φ2 − φ1| = |φ2 − φ1|, thus, d(pπ
2
,φ1 , pπ2 ,φ2

) = |φ2 − φ1| =

arccos
(
cos2 π2 + sin2 π

2 cos(φ1 − φ2)
)

.
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for p1, p2 ∈T2. The Riemannian probability measure is

(S.2.14) µ0(B) = Leb({(x, y) ∈ [0,1]2, (x, y) ∈B}),
where Leb is the Lebesgue measure on R2, for every Borel set B of T2.

The injectivity radius of the flat Torus T2 is given by I (T2) = 0.5, since the geodesic
γt = (t,0), for t ∈ [0,1] is of length 1, with γ0 = γ1 = (0,0), and no geodesic curve has a
smaller length.

PROPOSITION S.2.7. For every h≤ π
4 ' 0.7854 so that

√
h
π ≤I (T2) = 0.5, the radius

of a ball with µ0-measure h is δµ0,h =
√

h
π . Moreover, sh(µ0) = δdh with

(S.2.15) dh =

√
h

2π
.

The proof of Proposition S.2.7 is available in Appendix S.6.2.7.

S.2.2.2.4. The Bolza surface B in the Poincaré disk. The Poincaré disk is

D
2 = {x+ iy ∈C, x, y ∈R, x2 + y2 < 1},

equipped with the Riemannian metric G(x + iy)(v,w) = 4 vxwx+vywy
(1−x2−y2)2 for every x + iy ∈

D2 and v = (vx, vy),w = (wx,wy) ∈R2 (Bonahon, 2009, Section 2.7), is an homogeneous
Riemannian manifold. Isometries of D2 are given by φ : p ∈ D2 7→ αp+β

β̄p+ᾱ
with α,β ∈ C

so that |α|2 − |β|2 = 1 (Bonahon, 2009, Proposition 2.23), with inverse given by φ−1 : q ∈
D2 7→ −qᾱ+β

β̄q−α . For every p ∈D2, setting α = 1√
1−|p|2

and β = −αp provides an isometry

that sends p to 0. The geodesic distance is

(S.2.16) d(p1, p2) = argch

(
1 +

2‖p1 − p2‖2

(1− ‖p1‖2)(1− ‖p2‖2)

)
for p1, p2 ∈D23. The Riemannian measure is µ̃0 given by

(S.2.17) µ̃0(B) =

∫
x∈R

∫
y∈R

1B((x, y))1x2+y2<1
4

(1− x2 − y2)2
dxdy

and equivalently, by

(S.2.18) µ̃0(B) =

∫ 1

r=0

∫ 2π

θ=0
1B((r cos(θ), r sin(θ))

4r

(1− r2)2
drdθ,

for every Borel set B of D2. The measure µ̃0 is not a probability measure since D2 is not
compact.

In order to get a compact Riemannian manifold from D2, we identify points in D2 that
are equal up to a transformation of the Fuchsian group of isometries4 of D2 which generator
elements (fk)1≤k≤8 are given by:

(S.2.19) fk =

(
1+
√

2 (2+
√

2)
√√

2−1e
ikπ
4

(2+
√

2)
√√

2−1e−
ikπ
4 1+

√
2

)
.

3In particular, if p1 = t1v and p2 = t2v are aligned along some vector v ∈D2∗ and 0≤ t1 ≤ t2 ≤ 1, then,
d(p1, p2) = 2(argth(t2)− argth(t1)).

4The maps z 7→ fk(z) =
αkz+βk
β̄kz+ᾱk

with αk = (fk)1,1 and βk = (fk)1,2 are isometries ofD2, since |αk|
2−

|βk|
2 = 1.
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The Bolza surface, B, is a fundamental domain of the action of the Fuchsian group on D2,
given by the octagon delimited by the boundaries of the eight disks (Dk)1≤k≤8 given by:

(S.2.20) D8 = Bx0,r0 , with x0 =
1 + 1√

2
2√√

2
cos
(
π
8

) and r0 =
√
x2

0 − 1,

and Dk = e2iπ k
8D8 for k ∈ [[1,8]]5. Each generator of the Fuchsian group sends an edge of

the octagon to the opposite edge6. The Bolza surface is a compact homogeneous Riemannian
manifold since D2 is an homogeneous Riemannian manifold and the Fuschsian group is a
group of isometries. The Riemannian probability measure

(S.2.21) µ0 =
1

Ṽ
µ̃0

onB, with the µ̃0-measure of the Bolza surface given by V = µ̃0(B)' 12.5664, according to
Lemma S.6.2. Its injectivity radius I (B)≤ 2 argth(x0−r0)' 1.1437, the geodesic distance
between 0 and x0 − r0. 7.

The Poincaré disk and the Bolza surface are also quotients of the group SL2(R) Ratner
(1987); Faure (2023). This specificity is used in Section S.4.2 to compute geodesics.

PROPOSITION S.2.8. For every h so that δµ0,h ≤ I (B), the radius of a geodesic ball

with µ0-measure h is δµ0,h = 2 argth(
√

V h
4π+V h). Moreover, sh(µ0) = δdh with

(S.2.22) dh =

√√√√√2

argsh2

(√
hV

4π

)
+

((
argsh

(√
hV

4π

))√
4π

hV
+ 1− 1

)2
.

The proof of Proposition S.2.8 is available in Appendix S.6.2.8.

S.2.3. Median signatures. For the family of tests (φiid
n,h)h∈(0,1), we decided to use the

Wasserstein barycenters, that minimise the expectation of the squared L2-Wasserstein dis-
tance. We may have used the Wasserstein medians, that minimise the expectation of the
L1-Wasserstein distance. However, the stability of Wasserstein medians would be in L∞
Wasserstein (Carlier, Chenchene and Eichinger, 2023, Section 3.1), which is not satisfactory.

We do not expect a better upper bound than the one given by Proposition 2.6 in Brécheteau
(2025), based on the stability result of (Carlier, Delalande and Mérigot, 2024, Section 1.2.2),
that is,W2(�̄1, �̄2)≤W1(�1,�2). For instance, for a measure �1 = 1

3δδ0 + 1
3δµ+ 1

3δδ1 with µ
supported on [0,1] and �2 = 1

3δδ0 + 1
3δν + 1

3δδ1 , then,W1(med(�1),med(�2)) =W1(µ,ν) 6≤
W1(�1,�2) = 1

3W1(µ,ν).
The Wasserstein median is not unique, but existence is discussed in Carlier, Chenchene and

Eichinger (2023) for the Wasserstein barycenter of a finite number of probability measures.
If Wasserstein medians fail to satisfy all nice properties of Wasserstein barycenters, they may
have some nice properties relatively to robustness against outliers, and are not worthless.
Therefore, one may be interested in defining median signatures, as follows.

5The extremal points of B are given by ∂Dk ∩ ∂Dk+1 ∩D
2 = 2−

1
4 e2iπ

k
8

+iπ
8 , for k ∈ [[1,8]], with the

convention D9 =D1.
6For every k ∈ [[1,8]], fk sends ∂Dk+4 ∩ ∂B to ∂Dk ∩ ∂B, where Dk+4 is identified to Dk−4.
7According to Proposition S.2.8, the value of h corresponding to the radius 2argth(x0 − r0) is given by

h= 4π
V

(x0−r0)2

1−(x0−r0)2
' 0.7071.
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DEFINITION S.2.1. The empirical DTM-signature median s̄n,h,1(�̂0,n) to the uniform
distribution is defined as the Wasserstein median of the distribution sn,h(�̂0,n) of sh(µ̂0,n),
where µ̂0,n ∼ �̂0,n on P([0,D(X )]).

(S.2.23) s̄n,h,1(�0,n) ∈ arg min
s∈P([0,D(X )])

Es∼sn,h(�̂0,n) [W1(s,s)] .

In practice, median empirical DTM-signatures are approximated by a Monte Carlo proce-
dure. Moreover, the median s̄n,h,1(�̂n) converges to sh(µ), uniformly on µ ∈P(X ):

PROPOSITION S.2.9.

(S.2.24) sup
µ∈P(X )

W1(sh(µ), s̄n,h,1(�̂n))→ 0, n→∞.

The proof of Proposition S.2.9 is available in Section S.6.2.9.

S.3. Numerical illustrations - Supplement.

S.3.1. Supplement to Section 4.1 in Brécheteau (2025).

S.3.1.1. Definition of test aggregation and multiple testing procedures.

S.3.1.1.1. Aggregation of tests. We implement the aggregation method of Fromont and Lau-
rent (2006), that work as follows. For a collection of positive weights (ωi)i∈I satisfying∑

i∈I ωi = 1, we define the aggregated test φn,α as

(S.3.1) φn,α = 1⇔ sup
i∈I

Tn,hi − q1−uαωi,n,hi
> 0,

meaning that H0 is rejected when Tn,hi > q1−uαωi,n,hi
for some i ∈ I , where

(S.3.2) uα = sup

{
u > 0, P�̂0,n

(
sup
i∈I

Tn,hi − q1−uωi,n,hi
> 0

)
≤ α

}
,

and where q1−uαωi,n,hi
is the 1−uαωi-quantile of the distribution of Tn,hi , under H0 (that

is, when �n = �̂0,n). Since the null hypothesis is simple, the value of uα can be estimated via
a Monte-Carlo procedure, so that the test has a type I error of α. As for individual tests, the
rejection of the null hypothesis occurs if at least one of the statistics is too large.

S.3.1.1.2. Benjamini Hochberg procedure. The Benjamini-Hochberg procedure consists in
reordering the p-values (pn,hi)i∈I so that pn,h(1)

≤ pn,h(2)
≤ . . . ≤ pn,h(n)

. For α ∈ (0,1),
let R̃α = {i ∈ I, pn,h(i)

≤ αi
|I|}. Let i0 = max(R̃α). Then, Rα = {i ∈ I, pn,hi ≤ pn,h(i0)

}
denotes the indices of tests for which H0 is rejected. Then, based on the Benjamini-Hochberg
procedure, the hypothesis H0 : �n = �̂0,n is rejected when Rα 6= ∅. This procedure is not
proved to be of level α, since the independence of the test statistics is not satisfied, Benjamini
and Yekutieli (2001). However, we show numerically that this testing procedure has level α
on the considered examples.

S.3.1.1.3. Bonferroni procedure. In the Bonferroni procedure, the i-th test rejects H0 when
pn,hi ≤ α

|I| . Let Rα = {i ∈ I, pn,hi ≤ α
|I|} denotes the indices of tests for which the null

hypothesis H0 is rejected. Then, based on the Bonferroni procedure, the hypothesis H0 :
�n = �̂0,n is rejected when Rα 6= ∅. This test is of level α.
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S.3.1.2. Selection of the scale parameter. In this part, associated with Section 4.1, we
display the results of the same experiments done for S1 in Section 4.1 in Brécheteau (2025),
for the sphere S2, the torus T2 and the Bolza surface B.

We consider the following sampling procedures:

• On S2: the von Mises-Fisher distribution with parameter κ = 0.5 ; a mixture of 6 von
Mises-Fisher distributions with centers on a regular polytope, with parameter κ= 10

• OnT2: the Normal distribution with standard deviation 0.1 ; a mixture of 4 Normal distri-
butions with standard deviation 0.04, with centers (0,0.5), (0,−0.5), (0.5,0), (−0.5,0)

• On B: a distribution based on 10 iterations of a Brownian motion, with center 0, with
standard deviation 6 ; a mixture of 4 distributions based on 10 iterations of a Brownian
motion with standard deviation 1.5, with centers (0,−0.5), (0,0.5), (−0.5,0), (0.5,0).

In Figures S.3, S.4, and S.5, 100-samples of the different procedures available.

FIG S.3. Samples of uniform distributions, used in Section 4.1 in Brécheteau (2025).

FIG S.4. Samples of von Mises-Fisher or Normal distributions, used in Section 4.1 in Brécheteau (2025).

In Table 1, the power approximations of the tests are computed, and in Figure S.6, the
proportion of parameters h selected are displayed.

S.3.2. Supplement to Section 4.2 in Brécheteau (2025) Comparison to classical tests of
uniformity. In this part, associated with Section 4.2 in Brécheteau (2025), we represent the
p-values of the different tests of uniformity for the grid on the circle S1 and for the Sobol
sequence on the sphere S2, in Figure S.7. Then, we represent the power for the differents
tests of nominal level 1% and 10% on S1 in Figure S.8 and on S2 in Figure S.9. These two
figures strenghten the results obtained in Figure 3 in Brécheteau (2025) for the nominal level
5%.
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FIG S.5. Samples of mixtures of von Mises-Fisher or Normal distributions, of Section 4.1 in Brécheteau (2025).

FIG S.6. Selection of parameters h.

FIG S.7. Regular samples on S1 and S2 (left), p-values for the tests on these samples (right)
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Space Method Class. Aggregation Alt. Aggregation Benj.-Hoch. Bonferroni
S

2 Uniform 0.0496 0.0514 0.0364 0.0146
S

2 von Mises-Fisher 0.5802 0.5429 0.5689 0.3824
S

2 Mixture von Mises-Fisher 0.9785 0.9792 0.9434 0.943
T

2 Uniform 0.0481 0.0544 0.0376 0.0129
T

2 Normal 0.4876 0.5024 0.4739 0.3105
T

2 Mixture Normal 0.5972 0.6171 0.4569 0.3734
B Uniform 0.0476 0.0479 0.0344 0.0141
B Brownian 0.4048 0.4098 0.3562 0.2356
B Mixture Brownian 0.7604 0.7898 0.6879 0.5672

TABLE 1
Power comparison for tests of level 0.05

FIG S.8. Powers on the circle

FIG S.9. Powers on the sphere

S.3.3. Supplement to Section S.3.3 in Brécheteau (2025): Application to shape analysis.
In this section, we consider sets of points on several spaces (the olympic rings (1), the infinity
symbol (2), the sphere (3), the bunny (4), the klein bottle (5) and the projective plan (6)),
with cardinality 40000 (except for the sphere, 34686 points, and the bunny, 34835 points).
The spaces are 1-dimensional in R2 (1,2), 2-dimensional in R3 (3,4), 2-dimensional in R4
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(5,6). The samples (1,2,3,4) are represented in Figure S.10, together with the normal vectors
for examples (3,4).

FIG S.10. Samples : olympic rings, infinity symbol, sphere, Stanford bunny

The olympic rings (1) are union of five circles with radii 1 and with respective centers
(2.5,0),(1.3,−1), (0,0), (5,0) and (3.8,−1). The infinity symbol (2) is made of two cir-

cles with centers (0,0) and (14/4,0), with radii
√

2 and
√

9
8 , joined continuously by seg-

ments. The Stanford bunny (4), from the Stanford University Computer Graphics Labora-
tory, http://graphics.stanford.edu/data/3Dscanrep/ and the regular grid on the sphere (3) have
been generated from the python notebook Buet, Leonardi and Masnou, (for the sphere, with
generateEllipsoid(1, 1, 331)). The Klein bottle (5) and the projective plan (6)
have been generated according to the procedure described in Bobrowski and Skraba (2022).
For the Klein bottle, given two random variables θ and φ on [0,2π], we define the four coor-
dinates of a random vector by:

• X1 = (1 + cosθ) cosφ,
• X2 = (1 + cosθ) sinφ,
• X3 = sinθ cos φ2 ,
• X4 = sinθ sin φ

2 .

For the projective plan, given a random vector (U1,U2,U3), uniformly distributed on the
sphere S2, we define the four coordinates of a random vector by:

• X1 = U1U2,
• X2 = U1U3,
• X3 = U2

2 −U2
3 ,

• X4 = 2U2U3.

To all points, we associate an estimator of the normal vector (1,2,3,4), or the tangent space
(3,4,5,6), using Buet and Rumpf (2022); Buet, Leonardi and Masnou (2022) and its Python
implementation, available in Buet, Leonardi and Masnou. Regarding the normal vector, we
consider both the normal vector provided by the algorithm in Buet, Leonardi and Masnou
and its opposite vector. Therefore, the samples of normal vectors (in the circle (1,2) or in
the sphere (3,4)) have a cardinality that is twice the sample size, and they have a rotational
symmetry with respect to the origin. The tangent spaces are elements of the Grassmannian
G(2,3) for examples (3,4) and G(2,4) for examples (5,6). The distribution of the normal
vectors for the samples (1,2,3,4) are represented in Figure S.11.

For the olympic rings (1) (resp. for the sphere (3)), we observe a distribution of normal
vectors that seems to be uniform on the circle (1) (resp. on the sphere (3)). It makes sense,
since (1) is just a union of 5 circles, so the normal vectors, if well estimated (at least far from
intersection points), should behave uniformly. On the contrary, for the infinity symbol (2), the

http://graphics.stanford.edu/data/3Dscanrep/
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FIG S.11. Distribution of normal vectors : olympic rings, infinity symbol, sphere, Stanford bunny

distribution of the normal vectors is a sum of 4 dirac masses (represented by 4 points in the
circle), that delimitates 4 zones with constant density given by c (left and right) and c′ (top and
bottom), for some constants c < c′. The points correspond to the normal vectors of the straight
part of (2), parts with density c correspond to left and right parts of the infinity symbol,
whereas parts with density c′ correspond to top and bottom parts of the infinity symbol. Such
directions appear more often than the previous ones. The density of the normal vectors is not
uniform on the sphere. The density of the normal vectors on the bunny (4) are not uniform
either, as represented in the sphere. We saw two points, that may correspond to the direction
of the base of the bunny, with direction (0,0,1) and opposite direction (0,0,−1).

We have sampled 10000 100-samples of points from the large samples, and computed the
p-values for the tests of iidness, with parameter h varying in [0.1,0.3,0.5,0.7,0.9]. The dis-
tribution of the test statistics under the null hypothesis have been approximated by a Monte-
Carlo procedure with 10000 replications, so that the p-values are computed with respect to
this distribution approximation. Among the 10000 100-samples of normal vector and tangent
spaces distributions, we have sorted the p-values and represented these sorted p-values in
Figure S.12 and Figure S.13.

FIG S.12. Distribution of p-values for the iidness tests, normal directions
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FIG S.13. Distribution of p-values for the iidness tests, tangent planes

Notice that these curves correspond to approximations of the quantiles of the p-values,
under the alternatives. When the null hypothesis holds, we expect that the distribution of the
p-values is uniform, and that the quantile function is close to the function x 7→ x on [0,1],
which is the case for the distribution of normal vectors of the olympic rings (1), and the
normal vectors and tangent spaces for the sphere (2).

Under the alternative, we expect the quantile function to be below the function x 7→ x.
This is the case of all of the other examples. The rejections of the null hypothesis happen
even more often when the quantile function is close to x 7→ 0 on [0,1], which is the case
of the Klein bottle (5) and the projective plan (6). This makes sense since the dimension 2
of the tangent spaces to a surface in R4 is smaller than the dimension 2(4− 2) = 4 of the
GrassmannianG(2,4). Therefore, the measure cannot be uniform. We can also notice that the
small values of h provide tests that are more efficient to detect iidness and reject the most the
uniformity assumption. Notice that since we sampled randomly samples of size 100, among
samples of large size (approx. 40000), the samples behave as independent samples. Therefore
the rejection of the iidness tests is due to the non uniformity of the underlying measure, and
not on the dependance of sample points, as discussed in Section 4.3 in Brécheteau (2025).

The mean power of the tests, over the 10000 replications, for a level 0.05, are represented
in the table in Table 2, and numerically confirm the above-mentioned resuts of Figure S.12
and Figure S.13.

Although such experiments may have been done by one of the numerous existing tests
of uniformity on the circle, on the sphere (R package sphunif in García-Portugués and
Verdebout (2024), with an overview of existing tests in García-Portugués and Verdebout
(2018)), or on the Grassmannian Chikuse and Watson (1995); Chikuse and Jupp (2004), with
an R implementation given by the function grassmann.utest in the Riemann package,
You (2022), these illustrations enhance that the DTM-signature or barycenter signature for
normal vector, tangent plane, or more generally, to any space generated by a subfamily of
eigenvectors of local covariance matrices, provide new shape descriptors, and may be used for
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h 0.1 0.3 0.5 0.7 0.9
Olympic rings normal 0.0489 0.0504 0.0526 0.0531 0.0527
Infinity symbol normal 1.0 0.5027 0.1559 0.0659 0.0754

Sphere normal 0.0531 0.0505 0.0504 0.0478 0.0475
Bunny normal 0.896 0.4975 0.172 0.0683 0.0578
Sphere tangent 0.0488 0.0487 0.0491 0.0499 0.0509
Bunny tangent 0.8306 0.6821 0.5624 0.4939 0.4788

Klein bottle tangent 1.0 0.9998 0.9989 0.9889 0.9121
Projective plane tangent 0.9982 0.9974 0.9953 0.9868 0.9537

TABLE 2
Power of the test of iidness, based on 10000 100-samples

shape comparison, clustering, or even for testing equality of shapes, as alternatives to Mémoli
(2011); Osada et al. (2002); Brécheteau (2019); Chazal et al. (2009); Chazal, De Silva and
Oudot (2014).

S.4. Numerical procedures.

S.4.1. Monte Carlo procedure to estimate the barycenter signature. We approximate the
barycenter signature s̄h(�n) of a measure �n ∈P(Pn(X )) by Monte Carlo, by s̄h(�n,M ),
with �n,M = 1

M

∑M
m=1 δµn,M based on an M -sample (µn,M )1≤m≤M from �n . Its quantile

function is given by 1
M

∑M
m=1Qsm , with (sm = sh(µn,M ))1≤m≤M :

(S.4.1) s̄h(�n,M ) = arg min
s∈P([0,D(X )])

1

M

M∑
m=1

W2
2 (s,sm).

The estimator s̄h(�n,M ) converges in distribution to s̄h(�n), almost surely, whenM →∞.
This follows from Proposition 2.6 in Brécheteau (2025), from the fact that in compact Polish
spaces W1 metrizes weak convergence (Villani, 2008, Theorem 6.9), and since empirical
measures �n,M converge weakly to sampling measures �n almost surely Varadarajan (1958).

S.4.2. Sampling on the Bolza surface.

S.4.2.0.1. Sampling from the h0-uniform measure µ0 on the Bolza surface. Generating a
random point uniformly distributed in the disk B

0,2−
1
4

of the Poincaré disk is possible using
two independent random variables uniform on [0,1], as follows.

PROPOSITION S.4.1. The random variable Z =
√

U√
2−1+U

exp(2iπV ), with U and V

i.i.d. uniform on [0,1], follows the uniform measure
(
µ̃0

(
B

0,2−
1
4

))−1
(µ̃0)|B

0,2
− 1

4

.

The proof of Proposition S.4.1 is available in Section S.6.3.1.
To generate a uniform sample on the Bolza surface, we use an acceptance-rejection

method, based on a sample on the smallest ball containing the Bolza surface, B
0,2−

1
4

, and

where points in
⋃8
k=1Dk are rejected.

S.4.3. Generation of geodesics on the Bolza surface. To compute geodesics, we consider
the relation between the Poincaré disk D2 and the group SL2(R), Faure (2023); Ratner
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(1987). Every matrix g =
(
a b
c d

)
∈ SL2(R) can be decomposed as a product of three matrices,

accordingly to the NAK decomposition of Iwasawa8:

(S.4.2) g = ( 1 x
0 1 )

(
y1/2 0

0 y−1/2

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

We can identify SL2(R) to H2 × S1, where H2 is the Poincaré half space, via the map
g 7→ (z = x + iy, exp(iθ)). We can then identify SL2(R) to D2 × S1, using the Cayley
transform z ∈H2 7→ ω = z−i

z+i ∈D
2, that is an isometry9. Isometries of H2 are induced by

elements g =
(
a b
c d

)
∈ SL2(R) by, for every (z, eiθ):

(S.4.3) z 7→ az + b

cz + d
, and eiθ 7→ cz̄ + d

|cz̄ + d|
eiθ.

The isometry onD2 induced by g is CgC−1 =
(
α β̄
β ᾱ

)
∈ SU(1,1) (with |α|2−|β|2 = 1), for

C =
(

1 −i
1 i

)
.10

To compute geodesics on the Bolza surface, we compute geodesics in H2, apply trans-
formations of the Fuchsian group, gk in H211, and send points to D2 through the Cayley
transform.

The geodesic in H starting at g0 = (z0, θ0) with rate t is given by

gt = g0

(
exp(t/2) 0

0 exp(−t/2)

)
,

so that gt = (zt, θt) with:

(S.4.4) zt =
ia0 exp(t) + b0
ic0 exp(t) + d0

, and exp(iθt) =
d0 − ic0 exp(t)

|d0 − ic0 exp(t)|

Consequently, using the Cayley transform, we get in D2 that:

(S.4.5) ωt =
i(a0 exp(t)− d0) + b0 + c0 exp(t)

i(a0 exp(t) + d0) + b0 − c0 exp(t)
.

In particular, dD2(ωt, ωt′) = |t− t′|12

Notice that, for a geodesic in D2, starting at 0, the derivative of the geodesic at time t= 0
is related to the initial angle θ0: ω′0 = 1

2e
i2θ0 .

S.4.4. Brownian motion on the Bolza surface and mixtures of Gaussian measures. Ac-
cordingly to (Bharath et al., 2023, Section 3.1), a classical procedure to simulate a brow-
nian motion on a compact Riemanian manifold (M ,G), (Bt)0≤t≤T for T > 0, is to use a
Markov process (Xh

n)n∈[[0,N ]], defined from a partition of [0, T ] with fixed time step h= T
N ,

t0 = 0< t1 < . . . < tN = T , by:

8The relation between coefficients are: a= y1/2 cos(θ)−xy−1/2 sin(θ), b= y1/2 sin(θ)+xy−1/2 cos(θ),
c=−y−1/2 sin(θ), d= y−1/2 cos(θ), z = x+ iy = ia+b

ic+d , eiθ = d−ic
|d−ic| , θ.

9The inverse of the Cayley transform is given by z = φ−1(ω) = iω+1
1−ω .

10The relation between the coefficients are : α = 1
2 (a + d) + i

2 (b − c), β = 1
2 (a − d) +

i
2 (b + c), a =

Re(α) +Re(β) , b= Im(α) + Im(β), c= Im(β)− Im(α), d=Re(α)−Re(β).
11Element gk of the Fuchsian group has coefficients: ak = 1 +

√
2 + (2 +

√
2)
√√

2− 1cos
(
kπ
4

)
, bk =

ck =−(2 +
√
2)
√√

2− 1 sin
(
kπ
4

)
, dk = 1+

√
2− (2 +

√
2)
√√

2− 1cos
(
kπ
4

)
.

12This folllows from the fact that the Cayley transform is an isometry, that multiplication by g0 in SL2(R) is
an isometry inH, and footnote 3.
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• Xh
0 = x0 ∈M

• For every n ∈ [[0,N − 1]]:
– Select a random vector ξn+1 ∼N (0, h) on the tangent space TXh

n
(M ), for the metric

G(Xh
n) ;

– Define Xh
n+1 = expXh

n
(ξn+1), the value at time ‖ξn+1‖G(Xh

n) of the geodesic starting
from Xh

n with direction ξn+1

‖ξn+1‖G(Xhn)
.

In order to compute Brownian motion paths on the Bolza surface, we apply a slight vari-
ation of this procedure on D2 and apply transformations of the Fuchsian group for the paths
to remain in the Bolza surface. For convenience, in D2, we use the symmetry of D2 with
respect to 0: if φn+1 : z 7→ z+Xh

n

Xh
nz+1

is the Möbius transformation that sends the point 0 to Xh
n ,

then, we set

(S.4.6) Xh
n+1 = φn+1(exp0(ξn+1)),

with ξn+1, a random normal vector of distribution N (0, h) on T0(M ). This normal vector
is given by:

(S.4.7) ξn+1 =

√
h

2

√
Yn+1e

iΘn+1 ,

with Θn+1 uniform on [0,2π] and Yn+1 ∼ χ2(2), independent of Θn+1. Notice that
‖ξn+1‖G(0) =

√
hYn+1 has the same distribution as the Euclidean norm of a random vec-

tor in R2 with distribution N (0,
√
hI2).

A Gaussian measure on the Bolza surface with center c ∈B and variance t > 0 is defined
as the distribution of Bt, for a Brownian path starting from B0 = c. Mixtures of k ∈ N∗
Gaussian measures on the Bolza surface are distributions of type

∑k
i=1αiN (ci, ti), for

(αi)1≤i≤k ∈ [0,1]k, such that
∑k

i=1αi = 1.

S.5. Proofs of the results in the main paper, Brécheteau (2025).

S.5.1. Proofs for Section 1 in Brécheteau (2025).

S.5.1.1. Proof for Theorem 1.1 in Brécheteau (2025). According to the Prokhorov the-
orem, since X is a compact Polish space, P(X ) is compact for the weak convergence.
Since the weak convergence is metrized by theW2 distance, (Villani, 2008, Theorem 6.9), it
remains to prove that the function µ ∈P(X ) 7→Eµ [W2(µ̂n, µ)] is continuous with respect
toW2. Let π denote the optimal transport plan between µ and ν forW2 (that exists according
to (Villani, 2008, Theorem 4.1)) and (Xi, Yi) an n-sample from π, then:

Eµ [W2(µ̂n, µ)]−Eν [W2(ν̂n, ν)] =Eπ [W2(µ̂n, µ)−W2(ν̂n, ν)]

≤Eπ [W2(µ̂n, ν̂n) +W2(µ,ν)]

≤Eπ

√√√√ 1

n

n∑
i=1

d2(Xi, Yi)

+W2(µ,ν)

≤

√√√√ 1

n

n∑
i=1

Eπ [d2(Xi, Yi)] +W2(µ,ν)

= 2W2(µ,ν),
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according to the Jensen inequality. The second part of the lemma is a direct consequence of
the Markov inequality.

S.5.2. Proofs for Section 2 in Brécheteau (2025).

S.5.2.1. Proof for Proposition 2.1 in Brécheteau (2025). Since dµ0,h is constant accord-
ing to (2.5), and because of (2.6):

W1(sh(µ), sh(µ0)) =W1(dµ,h#µ,dµ0,h#µ)

≤
∫

X
|dµ,h(x)− dµ0,h(x)|dµ(x)

≤ ‖dµ,h − dµ0,h‖∞

≤ 1√
h
W2(µ,µ0).

If π denotes the optimal transport plan between µ and ν for W1(µ,ν), then, according to
the triangular inequality, (2.7) and (2.6):

W1(sh(µ), sh(ν))≤W1(dµ,h#µ,dµ,h#ν) +W1(dµ,h#ν ,dν,h#ν)

≤
∫

X
|dµ,h(x)− dµ,h(y)|dπ(x, y) + ‖dµ,h − dν,h‖∞

≤
∫

X
d(x, y)dπ(x, y) +

1√
h
W2(µ,ν)

≤W1(µ,ν) +
1√
h
W2(µ,ν).

Moreover, Hölder inequality for Wasserstein distances (Villani, 2008, Remark 6.6) yields:

(S.5.1) W1(sh(µ), sh(ν))≤
(

1 +
1√
h

)
W2(µ,ν).

The same methods provide the bounds for the L2-Wasserstein distance.

S.5.2.2. Proof for Proposition 2.2 in Brécheteau (2025). Using triangular inequality, we
get that for p= 1 or p= 2:
(S.5.2)
Eµ [Wp(sh(µ̂n), sh(µ))]≤E

[
Wp

(
dµ̂n,h#µ̂n

,dµ,h#µ̂n

)]
+E

[
Wp

(
dµ,h#µ̂n

,dµ,h#µ

)]
.

Parametric rates for the left term is obtained with the following Lemma S.5.1.
Concerning the right term, after noticing that dµ,h#µ̂n

is the empirical measure from an
n-sample from dµ,h#µ, and that the support of sh(µ) and sh(µ̂n) for every µ ∈P(X ),
h ∈ (0,1] and n ∈ N, is bounded, included in [0,D(X )], following arguments in Chazal,
Massart and Michel (2016), we get that:

• Equation (2.14) is satisfied according to (Bobkov and Ledoux, 2019, Theorem 3.2).
• Equation (2.15) is satisfied according to (Bobkov and Ledoux, 2019, Theorem 7.16).
• Equation (2.17) is satisfied according to (Bobkov and Ledoux, 2019, Theorem 5.1).
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• Equation (2.18) is satisfied sinceW2

(
dµ,h#µ̂n

,dµ,h#µ

)
= 0 when µ= µ0 since dµ0,h is

constant.

LEMMA S.5.1. For every h ∈ (0,1] and lh > 0, there exists some nh ∈N and C̃ > 0 that
does only depend on the diameter of X (not on h nor on µ) so that for every n ≥ nh, for
every measure µ ∈P(X ) so that infx∈X dµ,h(x)≥ lh,

(S.5.3) E

[
W1

(
dµ̂n,h#µ̂n

,dµ,h#µ̂n

)]
≤E

[
W2

(
dµ̂n,h#µ̂n

,dµ,h#µ̂n

)]
≤ C̃

hlh
√
n

PROOF. Let h ∈ (0,1]. According to (Chazal, Massart and Michel, 2016, Proposition 1),
also valid in the more general metric space (X ,d), we get that for every x ∈X :

(S.5.4)
∣∣d2
µ̂n,h(x)− d2

µ,h(x)
∣∣≤ 1

h
W1

(
d2(x, ·)#µ,d

2(x, ·)#µ̂n

)
.

Moreover, according to (Bobkov and Ledoux, 2019, Theorem 3.2) and the discussion be-
low, and since (X ,d) is a compact set, we get both that

(S.5.5) sup
µ∈P(X )

sup
x∈X

Eµ

[
W1

(
d2(x, ·)#µ,d

2(x, ·)#µ̂n

)]
≤ C√

n

and

(S.5.6) sup
µ∈P(X )

sup
x∈X

√
Eµ

[
W2

1

(
d2(x, ·)#µ,d2(x, ·)#µ̂n

)]
≤ C√

n

for some positive constant C .
Besides, note that for n > 1

h , for µ̂n = 1
n

∑n
i=1 δXi and µ̂n−1 = 1

n−1

∑n
i=2 δXi , we get that

(S.5.7) d2
µ̂n,h(X1) = d2

µ̂n−1,h̃
(X1),

where h̃=
(
h− 1

n

)
n
n−1 = hn−1

n−1 , since X1 is the nearest neighbour of X1 in {X1, . . . ,Xn}
with a distance equal to 0. Notice that X1 is independent from µ̂n−1.

Moreover, note that for every x ∈X ,∣∣∣d2
µ,h(x)− d2

µ,h̃
(x)
∣∣∣≤ ∣∣∣∣∣1h

∫ h

l=0
δ2
µ,l(x)− 1

h̃

∫ h̃

l=0
δ2
µ,l(x)

∣∣∣∣∣(S.5.8)

≤ 2D(X )2|h− h̃|
h̃

(S.5.9)

≤ 4D(X )2|h− h̃|
h

,(S.5.10)

according to (2.1), where the last inequality is correct for n≥ nh := max
(
2, 4

h

)
since

(S.5.11) h̃= h− 1− h
n− 1

≥ h− 2

n
≥ h

2
.

As a consequence, if infx∈X dµ,h(x)≥ lh > 0 and n≥ nh, then we get that:

E

[
W2

(
dµ̂n,h#µ̂n

,dµ,h#µ̂n

)]
≤
√
E

[
W2

2

(
dµ̂n,h#µ̂n

,dµ,h#µ̂n

)]
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≤

√√√√E[ 1

n

n∑
i=1

∣∣dµ̂n,h(Xi)− dµ,h(Xi)
∣∣2]

=

√
E

[∣∣dµ̂n,h(X1)− dµ,h(X1)
∣∣2]

≤

√√√√√√E

∣∣∣d2
µ̂n,h

(X1)− d2
µ,h(X1)

∣∣∣2∣∣dµ̂n,h(X1) + dµ,h(X1)
∣∣2


≤ 1

lh

√
E

[∣∣∣d2
µ̂n,h

(X1)− d2
µ,h(X1)

∣∣∣2]

≤ 1

lh

√
EX1∼µEX2,...Xn iid∼µ

[∣∣∣d2
µ̂n−1,h̃

(X1)− d2
µ,h̃

(X1)
∣∣∣2]

+
1

lh

√
E

[∣∣∣d2
µ,h(X1)− d2

µ,h̃
(X1)

∣∣∣2]

≤ C

h̃lh
√
n− 1

+
4D(X )2

hlh(n− 1)

≤ C̃

hlh
√
n
,

for some constant C̃ > 0 that does not depend on µ nor on h, according to the Minkowski
inequality, to (S.5.7), (S.5.8), (S.5.4) and (S.5.6), since X1 is independent from X2, . . . ,Xn.

S.5.2.3. Proof for Proposition 2.3 in Brécheteau (2025). If X is discrete, this result is a
consequence of Proposition S.2.3 below.

If X is not discrete, this result is a consequence of the unicity of uniform (resp. h0-
uniform) Borel probability measures Christensen (1970) (cf. Theorem S.1.1).

Let H > 0, let µ ∈P(X ) be such that ∀h ∈ [0,H], sh(µ) = sh(µ0). Then, µ(B(x, r)) =
µ0(B(x, r)) = µ0(B(y, r)) = µ(B(x, r)) for every x, y ∈X and r ≤ r(min(h0,H)). No-
tice that r(min(h0,H)) > 0 since (X ,d) is not discrete. Consequently, µ is min(h0,H)-
homogeneous, and by unicity, µ is thus equal to µ0, that is also min(h0,H)-homogeneous.

S.5.2.4. Proof for Proposition 2.4 in Brécheteau (2025). For the sake of contradiction,
assume that for every H , the number of accumulation points of {h ∈ [0,1], sh(µ) = sh(µ0)}
is infinite in (0,H], then there exists a sequence (rn)n converging to 0 so that µ(B(x, rn)) =
µ0(B(x, rn)) for every n ∈N and every x ∈X . Following the proof of Theorem S.1.1, it
implies that µ= µ0.

S.5.2.5. Proof for Proposition 2.5 in Brécheteau (2025). The proof is similar to the proof
of Proposition S.2.2 below, in Section S.6.2.2.

Let l, h ∈ (0,1) and x ∈ Al,h,µ1
. Then, dµl,h(x) = dµ0,

h

1−l
(x) = d h

1−l
for instance using

(2.1) and the fact that δµl,m(x) = δµ0,
m

1−l
(x) for every m<h .
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Then, since Al,h,µ1
⊂ Supp(µ1)c,

(S.5.12) W1(sh(µl), sh(µ0))≥ µl(Al,h,µ1
)
∣∣∣d h

1−l
− dh

∣∣∣= (1− l)µ0(Al,h,µ1
)
∣∣∣d h

1−l
− dh

∣∣∣ .
The equivalence follows from the fact that f : h 7→ dh is differentiable at h. So∣∣∣d h

1−l
− dh

∣∣∣= l
1−l (hf ′(h)) +O(l2), so

∣∣∣d h

1−l
− dh

∣∣∣∼l→0 Chµ0(Al,h,µ1
)l for some constant

non negative constant Ch that is equal to zero if and only if X is discrete with h < 1
|X | .

Moreover, since the sets (Al,h,µ1
)l≥0 are non increasing for the inclusion, µ0 (Al,h,µ1

)→l→0

µ0

(⋃
l>0Al,h,µ1

)
∈ (0,1].

S.5.2.6. Proof for Proposition 2.6 in Brécheteau (2025). According to (Carlier, Dela-
lande and Mérigot, 2024, Section 1.2.2),

(S.5.13) W2(s̄h(�̂n), s̄h(�̂n))≤W1(sh(�̂n), sh(�̂n)),

whereW1 is computed with respect to the L2-Wasserstein distance on P([0,D(X )]).
Then, using the optimal transport plan π between µ and ν for the L2-Wasserstein distance,

as in the proof of Theorem 1.1 in Brécheteau (2025), and using Proposition 2.1 in Brécheteau
(2025), we get that:

W2(s̄h(�̂n), s̄h(�̂n))≤Eπ [W1(sh(µ̂n), sh(ν̂n))]

≤Eπ
[(

1 +
1√
h

)
W2(µ̂n, ν̂n)

]
≤
(

1 +
1√
h

)
W2(µ,ν).

The second inequality is obtained with the same procedure, where � is the optimal transport
map between �n and �n for the L1-Wasserstein distance:

W2(s̄h(�n), s̄h(�n))≤E(µn,νn)∼�

[(
1 +

1√
h

)
W2(µn,νn)

]
=

(
1 +

1√
h

)
W1(�n,�n).

S.5.2.7. Proof for Proposition 2.7 in Brécheteau (2025). Using triangular inequality and
the definition of s̄h(�̂n), we get that:

W1 (sh(µ), s̄h(�̂n))≤W2 (sh(µ), s̄h(�̂n))

≤Eµ [W2(sh(µ), sh(µ̂n))] +Eµ [W2(s̄h(�̂n), sh(µ̂n))]

≤ 2Eµ [W2(sh(µ), sh(µ̂n))] .

Moreover,

E[W1 (sh(µ̂n), s̄h(�̂n))]≤E[W2 (sh(µ̂n), s̄h(�̂n))]

≤E[W2 (sh(µ̂n), sh(µ))] +W2 (sh(µ), s̄h(�̂n))

≤ 3Eµ [W2(sh(µ), sh(µ̂n))] .

We conclude with Proposition 2.1 in Brécheteau (2025) and Theorem 1.1 in Brécheteau
(2025).

The rates are obtained as a direct consequence of Proposition 2.2 in Brécheteau (2025).
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S.5.2.8. Proof for Proposition 2.8 in Brécheteau (2025). Let h ∈ (0,1), l ∈ (0,1), �1,n ∈
P(Pn(X )) and �l,n = l�1,n + (1− l)�̂0,n. Then,

W2(s̄h(�l,n), s̄h(�̂0,n)) =

√∫ 1

u=0

∣∣Qs̄h(�l,n)(u)−Qs̄h(�̂0,n)(u)
∣∣2 du

=

√∫ 1

u=0

∣∣∣Es∼sh#�l,n
[Qs(u)]−Es∼sh#�̂0,n

[Qs(u)]
∣∣∣2 du

=

√∫ 1

u=0

∣∣Eµ∼�l,n

[
Qsh(µ)(u)

]
−Eµ∼�̂0,n

[
Qsh(µ)(u)

]∣∣2 du

= l

√∫ 1

u=0

∣∣Eµ∼�1,n

[
Qsh(µ)(u)

]
−Eµ∼�̂0,n

[
Qsh(µ)(u)

]∣∣2 du

= lW2(s̄h(�1,n), s̄h(�̂0,n)).

where sh#�n is the distribution of sh(µ) for a Pn(X )-valued random measure µ with
distribution �n ∈P(Pn(X )).

S.5.3. Proofs for Section 3 in Brécheteau (2025).

S.5.3.1. Proof for Theorem 3.1 in Brécheteau (2025).

S.5.3.1.1. Proof of the consistency given by (3.17) for the tests of homogeneity.. Let h ∈
(0,1]. Let c> 0 and (εn)n∈N be a sequence of positive real numbers converging to 0. Recall
that:

H1(�̂0,n, h, c, εn) = {�n ∈P(Pn(X )),W2(s̄h(�n), s̄h(�̂0,n))> c, V2,h(�n)≤ εn}.

Since X is compact, the distances (Wp)p≥1 are comparable. Let wX > 0 be such that:

(S.5.14) ∀µ,ν ∈P([0,D(X )]),W1(µ,ν)≤W2(µ,ν)≤wX

√
W1(µ,ν).

According to (3.21), the quantile of Thom
n,h under H0 satisfies qhom

1−α,n,h → 0 when n→
∞, and the barycenter signature of �̂0,n converges to the signature of µ0, according to

Proposition 2.7 in Brécheteau (2025). Let nc ∈ N be such that qhom
1−α,n,h ≤

(
c

2wX

)2
and

so that W2(s̄h(�̂0,n), sh(µ0)) ≤ c
4 for every n ≥ nc. Then, for every n ≥ nc and every

�n ∈H1(�̂0,n, h, c, εn),

P�n

(
Thom
n,h ≥ qhom

1−α,n,h

)
≥P�n

(
Thom
n,h ≥

(
c

2wX

)2
)

≥Pµn∼�n

(
W2(sh(µ0), sh(µn))≥ c

2

)
,

according to (S.5.14) since all signatures are supported on [0,D(X )]

≥Pµn∼�n

(
W2 (sh(µ0), s̄h(�n))− c

2
≥W2 (s̄h(�n), sh(µn))

)
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≥Pµn∼�n

(
W2 (s̄h(�̂0,n), s̄h(�n))− c

2
≥W2 (s̄h(�n), sh(µn)) +W2 (s̄h(�̂0,n), sh(µ0))

)
≥ 1− sup

�n∈H1(�̂0,n,h,c,εn)
Pµn∼�n(W2 (s̄h(�n), sh(µn)) +W2 (s̄h(�̂0,n), sh(µ0))

>W2 (s̄h(�̂0,n), s̄h(�n))− c

2
)

≥ 1− sup
�n∈P(Pn(X )),Eµn∼�n [W2(s̄h(�n),sh(µn))]≤εn

Pµn∼�n

(
W2 (s̄h(�n), sh(µn))>

c

4

)
.

≥ 1− 4εn
c
, according to the Markov inequality.

For a sequence (�n)n∈N of measures in P(Pn(X )) such that

W2(s̄h(�n), s̄h(�̂0,n))≥ c > 0

for every n ∈N, and such thatW2(s̄h(�n), sh(µn)) converges in probability to 0, then,

(S.5.15) P�n

(
Thom
n,h ≥ qhom

1−α,n,h

)
≥ 1−Pµn∼�n

(
W2 (s̄h(�n), sh(µn))>

c

4

)
,

for n≥ nc, so, the power converges to 1 when n goes to +∞.

S.5.3.1.2. Proof of the consistency given by (3.17) for the tests of iidness.. We follow the
proof of the previous paragraph for φhom

n,h . Let h ∈ (0,1]. According to (3.21), the quantile of
Tiid
n,h under H0 satisfies qiid

1−α,n,h→ 0 when n→∞. Let nc ∈N be such that qiid
1−α,n,h ≤

c
2

for every n≥ nc. Then, for every n≥ nc and every �n ∈H1(�̂0,n, h, c, εn),

P�n

(
Tiid
n,h ≥ qiid

1−α,n,h

)
≥Pµn∼�n

(
W2(s̄h(�̂0,n), sh(µn))≥ c

2

)
≥Pµn∼�n

(
W2(s̄h(�̂0,n), s̄h(�n))− c

2
≥W2 (s̄h(�n), sh(µn))

)
≥ 1− sup

�n∈P(Pn(X )),Eµn∼�n [W2(s̄h(�n),sh(µn))]≤εn
Pµn∼�n

(
W2 (s̄h(�n), sh(µn))>

c

2

)
≥ 1− 2εn

c
.

For a sequence (�n)n∈N of measures in P(Pn(X )) such that W2(s̄h(�n), s̄h(�̂0,n))≥
c > 0 for every n ∈N, and such thatW2(s̄h(�n), sh(µn)) converges in probability to 0, then,

(S.5.16) P�n

(
Tiid
n,h ≥ qiid

1−α,n,h

)
≥ 1−Pµn∼�n

(
W2 (s̄h(�n), sh(µn))>

c

2

)
,

for n≥ nc, so, the power converges to 1 when n goes to +∞.

S.5.3.1.3. Proof of the consistency given by (3.18):. Let c> 0. Let µ ∈P(X ) such that

(S.5.17) W1(sh(µ), sh(µ0))> c.

Let ε ∈ (0, c) and let nε ∈N be such that

(S.5.18) sup
µ∈P(X ),n≥nε

W2(s̄h(�̂n), sh(µ))≤ ε

2
,

given by Proposition 2.7 in Brécheteau (2025). Then, using the triangular inequality forW2,
we get that

(S.5.19) W2(s̄h(�̂n), s̄h(�̂0,n))> c− ε.
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Moreover, for n ∈N, let

(S.5.20) εn = sup
µ∈P(X )

E [W2(sh(µ), sh(µ̂n)] + sup
µ∈P(X )

E [W2(sh(µ), s̄h(�̂n))] .

According to Proposition 2.1, Theorem 1.1 and Proposition 2.7 in Brécheteau (2025), the
sequence (εn)n∈N converges to 0.

Then, (3.18) follows from (3.17), with the constant c− ε > 0 and the sequence (εn)n∈N
above defined.

S.5.3.1.4. Proof of the consistency given by (3.19):. For every c > 0, the set of measures
{µ ∈P(X ),W2(µ,µ0)≥ c} is a compact set, and the function c 7→ W1(sh(µ), sh(µ0)) is
continuous according to Proposition 2.1 in Brécheteau (2025). Consequently, it is minimised,
with a minimum that cannot be 0 since h ∈H (X ). According to Proposition S.2.3, this is
the case for homogeneous discrete compact Polish spaces, for parameters h ∈H (X ), with
H (X ) that is not empty.

S.5.3.2. Proof for Theorem 3.2 in Brécheteau (2025).

S.5.3.2.1. Case H1

(
�̂0,n,W1, h, εn

− 1

2 , cn−
1

2

)
, for (Tn,h,q) = (Thom

n,h ,q
hom
1−α,n,h):. We fol-

low the proof of Theorem 3.1 in Brécheteau (2025). Let h ∈ (0,1] and ε > 0. For n ∈ N,
let s̄h,1(�̂0,n) be a median of sh(µ̂0,n) for µ̂0,n ∼ �̂0,n, with the same proof as for (2.27),
we get that W1(sh(µ0), s̄h,1(�̂0,n)) ≤ C

hdh
√
n

, for some C > 0, for n ≥ nh. Moreover,

qhom
1−α,n,h ≤

cα,h√
n

= C
hdhα

√
n

according to (3.21). So,

P�n

(
Thom
n,h ≥ qhom

1−α,n,h

)
≥P�n

(
W1 (s̄h,1(�̂0,n), s̄h,1(�n))≥

cα,h√
n

+W1 (s̄h,1(�n), sh(µn)) +W1 (s̄h,1(�̂0,n), sh(µ0))

)
≥P�n

(
W1 (s̄h,1(�̂0,n), s̄h,1(�n))≥ 2

cα,h√
n

+
ε

β
√
n

)
−P

(
W1 (s̄h,1(�n), sh(µn))>

ε

β
√
n

)
≥ 1− β,
provided that E [W1 (s̄h,1(�n), sh(µn))]≤ ε√

n
, according to the Markov inequality. We shall

take C = 2cα,h + ε
β . align*

S.5.3.2.2. Case H1

(
�̂0,n,W2, h, εn

− 1

r , cn−
1

r

)
, for (Tn,h,q) = (Tiid

n,h,q
iid
1−α,n,h):. Let h ∈

(0,1] and ε > 0. For n≥ nh, since qiid
1−α,n,h ≤

cα,h√
n

= C
hdhα

√
n

according to (3.21), for some
C > 0, we have that:

P�n

(
Tiid
n,h ≥ qiid

1−α,n,h

)
≥P�n

(
W2 (s̄h(�̂0,n), s̄h(�n))≥

cα,h√
n

+W2 (s̄h(�n), sh(µn))

)
≥P�n

(
W2 (s̄h(�̂0,n), s̄h(�n))≥

cα,h√
n

+
ε

β
√
n

)
−P

(
W2 (s̄h(�n), sh(µn))>

ε

β
√
n

)
≥ 1− β,

provided thatE [W2 (s̄h(�n), sh(µn))]≤ cα,hβ√
n

, according to the Markov inequality. We shall

take C = cα,h + ε
β . The proof is still valid when we replace

√
n by n

1

r for some r ≥ 2.
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S.5.3.2.3. Case H1

(
µ0,W1, lh, cn

− 1

2

)
, for (Tn,h,q) = (Thom

n,h ,q
hom
1−α,n,h):. This case is a

direct consequence of the case H1

(
�̂0,n,W1, h, εn

− 1

2 , cn−
1

2

)
, for (Tn,h,q) = (Thom

n,h ,q
hom
1−α,n,h),

with ε= C
hlh

.
Indeed, according to the definition of the median and (2.14),

E [W1 (s̄h,1(�̂n), sh(µ̂n))]≤E [W1 (sh(µ), sh(µ̂n))]

≤ C

hlh
√
n
.

Moreover, since according to (2.14), (2.18) and the definition of the median,

W1 (s̄h,1(�̂0,n), s̄h,1(�̂n))≥W1(sh(µ0), sh(µ))−W1(s̄h,1(�̂0,n), sh(µ0))−W1(s̄h,1(�̂n), sh(µ))

≥W1(sh(µ0), sh(µ))

−2E [W1(sh(µ̂0,n), sh(µ0))]− 2E [W1(sh(µ̂n), sh(µ))]

≥W1(sh(µ0), sh(µ))− 4
C

hmin(lh, dh)
√
n
,

we get that:

{
�̂n ∈P(Pn(X )), µ ∈P(X ),W1(sh(µ), sh(µ0))≥ c√

n

}
⊂
{

�n ∈P(Pn(X )),W1 (s̄h,1(�̂0,n), s̄h,1(�n))≥ c√
n
− 4

C

hmin(lh, dh)
√
n

}
with c√

n
− 4 C

hmin(lh,dh)
√
n
≥ C̃√

n
with C̃ = 2cα,h + ε

β (the constant C for the case

H1

(
�̂0,n,W1, h, εn

− 1

2 , cn−
1

2

)
), for c large enough.

S.5.3.2.4. Case H1

(
µ0,W2, lh, cn

− 1

4

)
, for (Tn,h,q) = (Tiid

n,h,q
iid
1−α,n,h):. As above, this

case is a direct consequence of the case H1

(
�̂0,n,W2, h, εn

− 1

r , cn−
1

r

)
, for (Tn,h,q) =

(Tiid
n,h,q

iid
1−α,n,h), together with (2.15) and (2.18).

S.5.3.2.5. Case H1

(
µ0,W2, lh, cJ , cn

− 1

2

)
, for (Tn,h,q) = (Tiid

n,h,q
iid
1−α,n,h):. This case is a

direct consequence of the case H1

(
�̂0,n,W2, h, εn

− 1

r , cn−
1

r

)
, for (Tn,h,q) = (Tiid

n,h,q
iid
1−α,n,h),

together with (2.17) and (2.18).

S.5.3.3. Proof for Theorem 3.3 in Brécheteau (2025). We use the following well known
Lemma S.5.2.

LEMMA S.5.2. If µ⊗n0 is the uniform measure on X n and µ(n) is a Borel probabil-
ity measure on X n. Let µ(n) = µabs + µsing be its Lebesgue decomposition given by the
Radon-Nikodym-Lebesgue theorem, with µabs absolutely continuous with respect to µ⊗n0 ,
with Radon-Nikodym density f , and µsing singular with respect to µ⊗n0 .

Then, for every sequence of random variables (φn)n∈N, with values in {0,1}, where φn =
φn(X1, . . . ,Xn) is a function of a random vector (X1, . . . ,Xn) ∈X n:

P(X1,...,Xn)∼µ⊗n0
(φn = 1) +P(X1,...,Xn)∼µ(n)(φn = 0)
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≥
∫

X n

min(1, f(x1, . . . , xn))dµ⊗n0 (x1, . . . , xn).

PROOF. First, notice that∫
X n

1φn=1(f − 1)dµ⊗n0 +

∫
X n

1φn=1dµsing ≤
∫

X n

1f≥1(f − 1)dµ⊗n0 + µsing (X n) .

So,

Pµ⊗n0
(φn = 1) +Pµ(n)(φn = 0)≥ 1 +

∫
X n 1f≥1(1− f)dµ⊗n0 − µsing (X n)

=
∫
X n (1f≥1(1− f) + f) dµ⊗n0

=
∫
X n min(1, f)dµ⊗n0

This is a consequence of Proposition 2.5 in Brécheteau (2025) with µ1 = δx0
together with

Lemma S.5.2.
Let γ ∈ (0,1) and lγ,n = − log(1−γ)

n . Let µγ,n = lγ,nµ1 + (1 − lγ,n)µ0. Then, for f the
Radon-Nikodym density of µ⊗n,abs

γ,n , the sub-measure of µ⊗nγ,n absolutely continuous with
respect to µ⊗n0 given by the Radon-Nikodym-Lebesgue theorem, we have that:

lim inf
n→+∞

Pµ0
(φn = 1) +Pµγ,n(φn = 0)≥ lim inf

n→+∞

∫
X n

min (1, f(x1, . . . , xn)) dµ⊗n0 (x1, . . . , xn)

= lim inf
n→+∞

∫
X n

min (1, (1− lγ,n)n) dµ⊗n0 (x1, . . . , xn)

= lim inf
n→+∞

exp(n log(1− lγ,n))

= 1− γ.

Indeed, note that f(x1, . . . , xn) = (1− lγ,n)n for every (x1, . . . , xn) ∈ (X \{x0})n.
Moreover, according to Proposition 2.5,

W2(sh(µγ,n), sh(µ0)) ≥ W1(sh(µγ,n), sh(µ0))

≥ (1− lγ,n)µ0(Alγ,n,h,δx0 )
∣∣∣d h

1−lγ,n
− dh

∣∣∣
∼n→+∞ Ch,δx0

− log(1− γ)

n
.

The Theorem follows from the choice C =−1
2Ch,δx0 log(1− γ)> 0.

S.5.3.4. Proofs for Proposition 4.1 in Brécheteau (2025). The function f : µn ∈
(P(X ),W2) 7→ sh(µn) ∈ (P([0,D(X )]),W1), is continuous, according to Proposition
2.1 in Brécheteau (2025). Moreover, Pn(X ) is a closed subset of the compact set P(X ),
according to Lemma S.5.3, and is therefore compact. So, the function f admits a minimum,
and Popt

n,h(X ) is not empty.

Moreover, if �n is supported on Popt
n,h(X ) and µn ∼ �n, we get that for every µn ∈

Pn(X ),

(S.5.21) Thom
n,h =W1 (sh(µn), sh(µ0))≤W1 (sh(µn), sh(µ0)) .

So, Thom
n,h ≤ qhom

1−α,n,h.
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LEMMA S.5.3. Let n ∈N, the subset Pn(X ) of P(X ) equipped with the Wasserstein
distanceW2 is closed.

PROOF. Let
(
Pm = 1

n

∑n
i=1 δx(m)

i

)
m∈N

be a sequence in Pn(X ) converging weakly to

some probability measure P ∈P(X ). Since (X ,d) is compact, let (x∗i )1≤i≤n be a limit

of a subsequence of
((

x
(m)
i

)
1≤i≤n

)
m∈N

, and P ∗ = 1
n

∑n
i=1 δx∗i . Since W2

2 (Pm, P
∗) ≤

1
n

∑n
i=1

∣∣∣x∗i − x(m)
i

∣∣∣2, it follows that P ∗ = P , so that P ∈Pn(X ).

S.6. Proofs of the results in this supplement.

S.6.1. Proofs for Section S.1 of the supplement.

S.6.1.1. Proof for Theorem S.1.1. Let φ be a continuous fonction on (X ,d). We shall
prove that

∫
X φ(x)dµ(x) =

∫
X φ(x)dν(x). The conclusion would follow from (Dudley,

2002, Lemma 9.3.2).
Let µ (resp. ν) be an h0(µ)-uniform (resp. h0(ν)-uniform) measure.
For 0 < r < r∗ := min(δµ,h0(µ), δν,h0(ν)) (r∗ > 0 since min(h0(µ), h0(ν)) > l0), let

cr = µ(B(x, r)) and c′r = ν(B(x, r)) for some (and thus for all) x ∈X , and let Krφ(x) =∫
B(x,r) φ(y)dµ(y)

cr
.

Firstly notice that according to the Fubini theorem, and since µ and ν satisfy (1.1) or (1.2),∫
X
Krφ(x)dµ(x)− cr

c′r

∫
X
Krφ(x)dν(x)(S.6.1)

=

∫
X
φ(y)

(∫
X
1d(x,y)<r

dµ(x)

cr
− cr
c′r

∫
X
1d(x,y)<r

dν(x)

cr

)
dµ(y) = 0.

Secondly notice that,∣∣∣∣∫
X
Krφ(x)dν(x)−

∫
X
φ(x)dν(x)

∣∣∣∣(S.6.2)

≤
∫

X

(∫
X
1B(x,r)(z) |φ(z)− φ(x)| dµ(z)

cr

)
dν(x)≤ ωr(φ)→ 0, r→ 0.

where ωr(φ) = supx,y∈X ,d(x,y)<r |φ(x)− φ(y)| converges to 0 when r converges to 0 since
φ is continuous on the compact X , and thus uniformly continuous.

According to (S.6.1) and (S.6.2), also true for µ, it follows that
∫
X φ(x)dµ(x) =

λ
∫
X φ(x)dν(x), with λ= limr→0

cr
c′r

that does not depend on φ. Taking φ= 1, we get that
λ= 1 since µ and ν are probability measures.

The second part follows from the same proof taking µ= µ0, c′r = cr and considering radii
r in the sequence (rn)n∈N.

S.6.1.2. Proof of Theorem S.1.2.. Let µ and ν be two Borel probability measures satis-
fying (S.1.3). Let µ0 be a quasi-uniform measure. Let φ be a continuous fonction on (X ,d).
We shall prove that

∫
X φ(x)dµ(x) =

∫
X φ(x)dν(x). The conclusion would follow from

(Dudley, 2002, Lemma 9.3.2) that states that two Borel probability measures µ and ν so that∫
φ(x)dµ(x) =

∫
φ(x)dν(x) for every bounded continuous function φ coincide.
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For 0< ε < ε0, and x ∈X , let cε,x = µ0(B(x, ε)) and let Kεφ(x) =
∫

B(x,ε) φ(y)dµ0(y)
cε,x

.

Firstly notice that

(S.6.3)
∫

X
Kεφ(x)dµ(x)−

∫
X
Kεφ(x)dν(x)→ 0, ε→ 0,

Indeed, ∣∣∣∣∫
X
Kεφ(x)dµ(x)−

∫
X
Kεφ(x)dν(x)

∣∣∣∣
≤
∫

X
|φ(y)|

∣∣∣∣∫
X
1d(x,y)<ε

dµ(x)

cx,ε
−
∫

X
1d(x,y)<ε

dν(x)

cx,ε

∣∣∣∣dµ0(y)

≤
∫

X
|φ(y)|

(∫
X
1d(x,y)<ε

∣∣∣∣ 1

cx∗,ε
− 1

cx,ε

∣∣∣∣dµ(x) +∫
X
1d(x,y)<ε

∣∣∣∣ 1

cx∗,ε
− 1

cx,ε

∣∣∣∣dν(x) + 0
)
dµ0(y)

for x∗ ∈X fixed, since µ and ν coincide on balls with radius smaller than ε0.
Moreover, ∫

X
|φ(y)|

(∫
X
1d(x,y)<ε

∣∣∣∣ 1

cx∗,ε
− 1

cx,ε

∣∣∣∣dµ(x)

)
dµ0(y)

≤ sup
x,y∈X

∣∣∣∣cx,εcy,ε
− 1

∣∣∣∣ ∫
X

1

cx∗,ε

∫
X
1d(x,y)<ε |φ(y)|dµ0(y)dµ(x)

≤ sup
x,y∈X

∣∣∣∣cx,εcy,ε
− 1

∣∣∣∣‖φ‖∞ ∫
X

cx,ε
cx∗,ε

dµ(x)→ 0, ε→ 0,

since µ0 is quasi-uniform.
Secondly, notice that

(S.6.4)
∫

X
Kεφ(x)dµ(x)−

∫
X
φ(x)dµ(x)→ 0, ε→ 0.

Indeed,∣∣∣∣∫
X
Kεφ(x)dµ(x)−

∫
X
φ(x)dµ(x)

∣∣∣∣≤ ∫
X

(∫
X
1B(x,ε)(z) |φ(z)− φ(x)| dµ0(z)

cx,ε

)
dµ(x)

≤ ωε(φ).

where ωε(φ) = supx,y∈X ,d(x,y)<ε |φ(x)− φ(y)| converges to 0 when ε converges to 0 since
φ is continuous on the compact X , and thus uniformly continuous.

According to (S.6.3) and (S.6.4), also true for ν, it follows that
∫
X φ(x)dµ(x) =∫

X φ(x)dν(x).

S.6.2. Proofs for Section S.2 of the supplement.

S.6.2.1. Proof for Proposition S.2.1. Let x∗ ∈ X be such that d(x∗,Supp(µ)) =
dH(Supp(µ),X ), such a point x∗ exists since Supp(µ) is compact. Then,

(S.6.5) dµ0,h(x∗)≤ dµ0,h(ε)(x
∗)< ε≤ dµ,h(x∗)

for every 0< h< h(ε) since µ(B(x∗, ε)) = 0 whereas µ0(B(x∗, r))> 0 for every 0< r < ε.
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S.6.2.2. Proof for Proposition S.2.2. Let l, h ∈ (0,1) and x ∈ Al,h :− {x ∈ X |
B(x, rh(1−l))⊂ Supp(µl)}. Then, since Supp(µl) is closed, B̄(x, rh(1−l))⊂ Supp(µl). Con-

sequently, µl
(
B̄(x, rh(1−l))

)
= 1

1−lµ0

(
B̄(x, rh(1−l))

)
≥ h(1−l)

1−l = h, by definition of rh(1−l).
Since µl(B̄(x, r)) = 1

1−lµ0(B̄(x, r)) for every r ≤ rh(1−l), we deduce that δµl,m(x) =
δµ0,m(1−l)(x) ≤ rh(1−l) for every m < h. Using (2.1), we conclude that dµl,h(x) =
dµ0,h(1−l)(x) = dh(1−l) for every x ∈Al,h. So,

W1(sh(µl), sh(µ0)) =

∫
R

∣∣∣F−1
sh(µl)

(u)− F−1
sh(µ0)(u)

∣∣∣du
=

∫
R

∣∣∣∣F−1
dµl,h#µl

(u)− dh

∣∣∣∣du
≥ µl(Al,h)

∣∣dh(1−l) − dh
∣∣

=
1

1− l
µ0(Al,h)

∣∣dh(1−l) − dh
∣∣ .

The equivalence follows from the fact that f : h 7→ dh is differentiable at h (since it is
expressed as an integral, cf. (2.1)), so

∣∣dh − dh(1−l)
∣∣ = l (hf ′(h)) + O(l2), so |dh(1−l) −

dh| ∼l→0 Chl for some constant Ch. This constant Ch is non negative since f is non decreas-
ing. Moreover, Ch = 0 if and only if f is locally constant around h, that is, if and only if X
is discrete with h < 1

|X | .

S.6.2.3. Proof of Proposition S.2.3. Let h ∈
[

1
N ,

k+1
N

]
. Let µ 6= µ0. Let x ∈X be such

that µ({x}) < 1
N . Then, d2

µ,h(x) ≥ h−µ({x})
h d2

2 >
h− 1

N

h d2
2 = d2

µ0,h
(x). Therefore, sh(µ) 6=

sh(µ0).
The first lower bound follows from the expression:

(S.6.6) W1 (sh(µ), sh(µ0)) =
1

N

∑
x∈X

|dµ0,h(x)− dµ,h(x)| .

The second lower bound follows from the inequality:

(S.6.7) ∀0≤ x≤ y ≤ 1,
√

1− x−
√

1− y ≥ 1

2
(y− x) ,

and the fact that
∑

x∈X , µ({x})< 1

N

(
1
N − µ({x})

)
=
∑

x∈X , µ({x})> 1

N

(
µ({x})− 1

N

)
=

1
2

∑
x∈X

∣∣µ({x})− 1
N

∣∣.
The last two lower bounds are obtained by considering a coupling π of µ and µ0

so that: π({x} × {x}) = min
{

1
N , µ({x})

}
. Morally, for such a coupling, the mass∑

x∈X , µ({x})> 1

N

(
µ({x})− 1

N

)
of µ is transported to another point, of a distance at most

dN , and the remaining mass is not transported.

S.6.2.4. Proof of Propostion S.2.4. Let h ∈
[
0, 1

N

)
, then, every probability measure µ ∈

P(X ) satisfying µ({x})≥ h for every x ∈X is such that sh(µ) = sh(µ0) = δ0.

S.6.2.5. The circle S1. Let Rpθ ∈ S1
R, then, µ0(BRpθ,r) = 1

2πLeb([θ−
r
R , θ+ r

R ]) = r
πR

for every r ∈ [0,Rπ]. So, δµ0,h = δµ0,h(x) = Rhπ. Moreover, d2
µ0,h

(x) = 1
h

∫ h
l=0 δ

2
µ0,l

dl =
1
h

∫ h
l=0R

2π2l2dl= 1
3π

2R2h2.

So, sh(µ0) = δdh with dh =
√

1
3πRh.
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S.6.2.6. The sphere S2. Since S2 is homogeneous, for simplification, we consider the
ball centered at p0,0 = (1,0,0), Bp0,0,r = {pθ,φ, arccos(cosθ)≤ r}= {pθ,φ, θ ≤ r}, for r ≥
0.

S.6.2.6.1. For h ≤ 1
2 . For r ≤ π

2 , µ0(Bp0,0,r) = 1
4π

∫ r
θ=0

∫ 2π
φ=0 sinθdθdφ = 1

2(1 − cos r).
Therefore, rh := δµ0,h = arccos (1− 2h) for h≤ 1

2 .
Then,

d2
µ0,h(x) =

1

h

∫ h

0
δ2
µ0,ldl

=
1

h

∫ h

0
arccos2(1− 2l)dl

=
1

2h

∫ rh

r=0
r2 sin(r)dr

=
1

2h

([
−r2 cos(r)

]rh
0

+

∫ rh

0
2r cos(r) dr

)
=

1

2h

([
−r2 cos(r)

]rh
0

+ [2r sin(r)]rh0 −
∫ rh

0
2 sin(r) dr

)
=

1

2h

([
−r2 cos(r)

]rh
0

+ [2r sin(r)]rh0 + 2[cos(r)]rh0
)

=
1

2h

(
−r2

h cos(rh) + 2rh sin(rh) + 2 cos(rh)− 2
)
,

with the change of variables r = arccos(1− 2l) on [0, h].

S.6.2.6.2. For h≥ 1
2 . For r ≥ π

2 , µ0(Bp0,0,r) = 1−µ0(Bp0,0,π−r) = 1− 1
2(1− cos (π− r)).

Therefore, rh := δµ0,h = π− arccos(−1 + 2h) for h≥ 1
2 .

Then,

d2
µ0,h(x) =

1

2h

∫ rh

r=0
r2 sin(r) dr

=
1

2h

(
−r2

h cos(rh) + 2rh sin(rh) + 2 cos(rh)− 2
)
,

with the change of variables r = π − arccos(−1 + 2l) on
[
π
2 , h
]

and r = arccos(1− 2l) on[
0, π2

]
.

S.6.2.7. The flat torus T2. The expression of δµ0,h =
√

h
π for h ≤ π

4 is given by h =

πδ2
µ0,h

, the Lebesgue volume of the 2-dimensional ball with radius δµ0,h. Then, d2
µ0,h

(x) =
1
h

∫ h
0

l
πdl= 1

2
h
π .

S.6.2.8. The Bolza surface B.

LEMMA S.6.1. For every radius R ∈ [0,1), the µ̃0-measure of the Euclidean ball with
radius R, B‖·‖,0,R, is given by µ̃0(B‖·‖,0,R) = 4πR2

1−R2 .
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PROOF. µ̃0(B‖·‖,0,R) =
∫ R

0 8π r
(1−r2)2 dr = 4πR2

1−R2 .

LEMMA S.6.2. The µ̃0-measure of the Bolza surface is given by:

(S.6.8) V := µ̃0(B) =
4π√
2− 1

− 8

∫ π

8

−π
8

r2
1(θ)− 1√

2

(1− r2
1(θ)(1− 1√

2
))
dθ.

In particular, V ' 12.5664.

PROOF. According to Section S.2.2, the Bolza surface domain is given by B0,R∩
⋂8
j=1 Bc

j ,

with R= 2−
1

4 .
The µ̃0-volume of the Bolza surface is thus given by V = V0 − 8V1, with V0 = µ̃0(B0,R)

and V1 = µ̃0(B0,R ∩ Bj) = µ̃0(B0,R ∩ B8) for any j ∈ [[1,8]], since the sets B0,R ∩ Bj are
mutually disjointed.

According to Lemma S.6.1, V0 = 4π√
2−1

.

Moreover,

(S.6.9) V1 =

∫ π

8

θ=−π
8

∫ 2−
1
4

r=r(θ)

4r

(1− r2)2
drdθ = 2

∫ π

8

−π
8

1√
2
− r2(θ)

(1− r2(θ))
(

1− 1√
2

)dθ,

with r(θ), the Euclidean distance between 0 and B8 along the direction with angle θ. Accord-
ing to definitions of sinus and cosinus with ratios in right triangles and Pythagore theorem,
r(θ) is given by:

(S.6.10) r(θ) = x0 cos(θ)−
√
r2

0 − sin2(θ)x2
0.

A numerical approximation of V1 gives V1 ' 2.2214, so that V ' 12.5664.

Let δµ0,l = 2 argth(rl) be the geodesic radius of the ball centered at 0 (with Euclidean
radius rl) that contains the proportion l of the mass of the uniform measure on the Bolza

surface. According to Lemma S.6.1, rl =
√

V l
4π+V l .

Then, setting x=
√

V l
4π , and noting that argth

(
x2

1+x2

)
= argsh(x), we get that:

d2
µ0,h(0) =

1

h

∫ h

l=0
δ2
µ0,ldl

=
1

h

∫ h

l=0

(
2 argth

(√
V l

4π+ V l

))2

dl

=
4

h

∫ h

l=0
argsh2

(√
V l

4π

)
dl

=
32π

hV

∫ √V h
4π

x=0
argsh2(x)x dx

=
32π

hV

∫ argsh
(√

V h
4π

)
y=argsh(0)

sh(y)y2 sh′(y) dy
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=
8π

hV

∫ argsh
(√

V h
4π

)
argsh(0)

(e2y − e−2y)y2 dy

=
4π

hV

[
(2y2 + 1) ch(2y)− 2y sh(2y)

]argsh
(√

V h
4π

)
argsh(0)

=
4π

hV

(
−1 + (2c2

h + 1) ch(2ch)− 2ch sh(2ch)
)
,

with ch = argsh

(√
V h
4π

)
.

So, after simplification with the formula ch(2x) = 2 sh2(x)+1, sh(2x) = 2 sh(x) ch(x) =

2 sh(x)
√

1 + sh2(x):

(S.6.11) d2
µ0,h(0) = 2

argsh2

(√
hV

4π

)
+

((
argsh

(√
hV

4π

))√
4π

hV
+ 1− 1

)2
 .

S.6.2.9. Proof of Proposition S.2.9. Using triangular inequality, Proposition 2.1 in
Brécheteau (2025), and the definition of s̄n,h,1(�̂n), we get that:

W1 (sh(µ), s̄n,h,1(�̂n))≤Eµ [W1(sh(µ), sh(µ̂n))] +Eµ [W1(s̄n,h,1(�̂n), sh(µ̂n))]

≤ 2Eµ [W1(sh(µ), sh(µ̂n))] .

We conclude with Theorem 1.1 in Brécheteau (2025).

S.6.3. Proofs for Section S.3 of the supplement.

S.6.3.1. Proof of Proposition S.4.1. The distribution
(
µ̃0

(
B

0,2−
1
4

))−1
(µ̃0)|B

0,2
− 1

4

is

the distribution of R exp(2iπV ) with R and V independent, V uniform on [0,1] and R with
density r→ (

√
2− 1) 2r

(1−r2)2 with respect to the Lebesgue measure on [0,2−
1

4 ]. The cumu-

lative distribution function of R is given by FR : r ∈ [0,2−
1

4 ] 7→ (
√

2− 1) r2

1−r2 . Therefore,
the generalised inverse of its cumulative distribution function is given by F−1

R : u ∈ [0,1] 7→√
u√

2−1+u
. We conclude with the fact that for U uniform on [0,1], the cumulative distribution

function of F−1
R (U) is FR.
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