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Abstract
We focus on the questions of testing and learning for datasets represented by a matrix of pairwise
distances between datapoints. Such datasets can be considered as discrete versions of metric measure
spaces (mm spaces). We recall the Gromov’s mm spaces reconstruction theorem, that states that mm
spaces can be represented by the distribution of pairwise distance matrices. We give an alternative
and detailed proof of this theorem. Then we introduce a new metric between mm spaces, based on
this theorem, as an alternative to the Gromov-Wasserstein distance, and prove stability results and
in particular parametric rates. As the Gromov-Wasserstein distance, this metric allows to account
for variations of both density and shape of datasets. We provide new goodness-of-fit and two-sample
tests for mm spaces, but also new classification methods for data given by mm spaces (or pairwise
distance matrices), based on this new metric.
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1 Introduction

Pairwise distance matrices between points in a dataset can often be used to provide learning
methods. The only requirement is that the space containing datapoints has to be equipped
with a metric. Examples of such spaces are graphs, Riemannian manifolds with in particular
spaces for directional data (torus, circle, sphere, the Grassmannian, etc.). Concrete examples
such as images also fit into this framework. Even for Euclidean spaces, considering pairwise
distance matrices is relevant if we are not interested in the location nor in the principal
directions of the datapoints, since two datasets equal up to a translation or a rotation have
the same distance matrix.

Clustering methods have been widely used for such datasets, as for instance spectral
clustering [32] or density modes and neighborhood graphs-based algorithms [13]. Such
methods allow to extract different separated features from datasets. In this paper, we
are more interested on infering the shape of these features or datasets, and their density
variations. In particular, we focus on the question of testing that two samples are equal up
to a rotation or a translation, or if a sample is uniform on a shape. We are also interested in
defining learning algorithms (e.g. classification) where each datapoint is given by a pairwise
distance matrix, and where we aim at assigning a class to each datapoint. To tackle these
problematics, we consider the more general concept of metric measure space. We consider
that the datapoints are a sample of n independent random variables generated according to
the same probability distribution PX on a metric space (X ,dX ). If (X ,dX ) is complete
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and separable, and PX is a Borel probability measure with support Supp(PX ) equal to
X (defined as the smallest closed subset of X with PX -probability 1), then, we say that
(X ,dX ,PX ) is a metric measure space, or mm space for short. Such spaces have been
studied by Gromov in [19] and Sturm in [28], and are still widely used, especially for data
analysis. Two mm spaces (X ,dX ,PX ) and (Y ,dY ,PY ) are considered equal when they
are isomorphic, in the sense that there exists some one-to-one and onto function ϕ : X 7→ Y

which is an isometry and so that the pushforward of the measure PX by ϕ, ϕ♯(PX ), is equal
to the measure PY :
1. ∀x, x′ ∈ X , dX (x, x′) = dY (ϕ(x), ϕ(x′)),
2. ∀B, Borel set of Y , PY (B) = PX (ϕ−1(B)) = ϕ♯(PX )(B).
The Gromov’s mm spaces reconstruction theorem [19, Theorem 3 1/2.5.] states that two mm
spaces are isomorphic if and only if the distribution of the sample pairwise distance matrices
coincide, for every sample size. For a sample of size 2, this distribution coincides with the
shape signature, [23]. Several other signatures induce pseudo-metrics to compare mm spaces.
For instance, distance-to-measure signatures (DTM-signatures) based on distances to nearest
neighbours have been used to test equality of two mm spaces up to an isomorphism [7] and
to test uniformity of a sample on a compact homogeneous space such as a ball, a torus or a
Grassmannian, [8]. Topological signatures such as persistence diagrams [11, 12] have been
widely used to compare the topological features of datasets, including connected components,
loops, voids, etc. If these signatures induce pseudo-metrics, a metric has been defined by
Mémoli in [22] to compare mm spaces up to an isomorphism, the Gromov-Wasserstein
distance. Since then, the litterature have been proficient on the subject. In [3], the Gromov-
Wasserstein distance has been adapted to generalisations of mm spaces. Lots of references
are available in this paper regarding recent use of Gromov-Wasserstein distance in machine
learning and data science, for scalable and empirically accurate computational schemes for
its estimation, as well as for other variants of Gromov-Wasserstein distances to compare
mm spaces. Recently, [14] proved the existence of an optimal Monge transport plan for the
Gromov-Wasserstein distance between two mm spaces. In [24], a notion of barycenter for
mm spaces or for distance matrices has been considered. A notion of weak convergence for
mm spaces has been studied in [18]. Comparing two measures defined on the same space
may also been interesting. For instance, in [2], the Gromov-Wasserstein distance has been
studied on spheres. Classical probability measures on the sphere S d−1 in the Euclidean space
Rd are rotationally symmetric distributions Rθ,f with density x 7→ f(⟨x, θ⟩) with respect
to the uniform distribution on the sphere, for some monotonous function f and location
parameter θ ∈ S d−1, and more specifically von Mises distributions Mθ,κ for the function
f : u 7→ exp(κu). Two rotationally symmetric distributions are equal up to an isomorphism
if they have the same function f or the same concentration parameter κ. In such a case, they
are equal up to a rotation.

In this paper, we provide a detailed aternative proof of Gromov’s mm spaces reconstruction
theorem. Based on this theorem, we introduce a new metric between mm spaces, which is
an alternative to the Gromov-Wasserstein distance. This metric is based on characteristic
functions of measures defined on matrix spaces. Characteristic functions characterize measures
and have been used recently for two-samples tests [21] and for goodness-of-fit tests [15]. We
tackle these two types of tests for mm spaces. More precisely, we introduce a new uniformity
test on spheres as well as a new two-sample test for mm spaces. For their practical relevance,
we study discrete variants of our new metric. Some variant sends an mm space to an element
of the Euclidean space RD for some dimension D. From this representation, we investigate
several classical classification methods on RD to perform learning tasks on mm spaces. We
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show that these methods are able to infer shape and density from samples. Moreover, by
turning a gray-level image into a sample of points, we show with numerical experiments
that our method is also particularly performant for images classification tasks, with respect
to convolution neural networks. Notice that a notable merit of our procedures is that the
sample size does not have to be fixed for tests and learning tasks to compare mm spaces
from which these samples have been generated.

The paper is organized as follows. In Section 2 we focus on the notion of mm space.
First, we recall and prove the Gromov’s mm spaces reconstruction theorem. Then, we define
a new metric between mm spaces, based on the Gromov’s theorem, and provide stability
properties and statistical rates for this metric. In Section 3 we focus on testing problems
based on this new metric: two-sample tests for mm spaces and goodness-of-fit tests, with
the particular case of uniformity tests on spheres. The high performance of the new tests is
confirmed with power computation on generated samples in several contexts. In Section 4,
we focus on classification tasks for datapoints given by mm spaces, based on the new metric.
In particular, we show that our method is a relevant competitor of classical Convolutional
Neural Networks for images classification, in particular, in the context of digits recognition.

2 A new metric for metric measure spaces based on Gromov’s mm
spaces reconstruction theorem

2.1 On the Gromov’s mm spaces reconstruction theorem
In this section, we recall the Gromov’s mm spaces reconstruction theorem [19, Theorem 3
1/2.5.] and provide an alternative detailed proof of the result.

2.1.1 The theorem
Given two mm spaces, (X ,dX ,PX ) and (Y ,dY ,PY ), the mm spaces reconstruction
theorem recalled in Theorem 1 provides a criterion based on the distribution of samples
pairwise distance matrices to determine if these two spaces are isomorphic or not. More
precisely, the theorem states that the knowledge, for every sample size r, of the distribution of
the pairwise distance matrix associated to an r-sample from a measure, suffices to reconstruct
the associated metric measure space up to an isomorphism.

For a sample size r ≥ 2, let PX ,r denote the distribution of the distance matrix
(dX (Xi, Xj))1≤i<j≤r ∈ R

r(r−1)
2

+ of an r-sample X1, . . . , Xr (of r independent random variables
with the same distribution PX ) from PX . This distribution PX ,r = DX ,r♯(P

⊗r
X ) is the

pushforward of the measure P⊗r
X of an r-sample from PX , with the function DX ,r : X r →

R
r(r−1)

2
+ , (x1, x2, . . . , xr) 7→ (dX (xi, xj))1≤i<j≤r. Within this framework, the theorem states

as follows.

▶ Theorem 1 (mm spaces reconstruction theorem [19]). Let (X , dX ,PX ) and (Y , dY ,PY )
be two mm spaces. That is, each of them is a separable complete metric space equipped with a
Borel probability measure whose support coincides with the whole space. Then, the following
statements are equivalent:
1. The measures PX ,r and PY ,r are equal for every r ≥ 2.
2. The mm spaces (X ,dX ,PX ) and (Y ,dY ,PY ) are isomorphic.

If point 1 is a direct consequence of point 2, the proof of the converse relies on the theorem
of extension of isometries (Lemma 8) and is detailled in the following section. We illustrate
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this theorem with the following Example 2 that provides examples of isomorphic and non
isomorphic mm spaces.

▶ Example 2. Let ΞX = (X ,dX ,PX ), ΞY = (Y ,dY ,PY ) and ΞZ = (Z ,dZ ,PZ ) be
three mm spaces defined by X = Z = {0, 1} and Y = {1, 2}. These subsets of R are
equipped with the absolute value dX = dY = dZ = | · − · |. We consider the following
discrete probability measures on these spaces: PX = 1

4δ0 + 3
4δ1 puts a mass 1

4 to the
point 0 and a mass 3

4 to the point 1, PY = 3
4δ1 + 1

4δ2, and PZ = 1
2δ0 + 1

2δ1. Then,
the spaces ΞX and ΞY are isomorphic, but they are not isomorphic to ΞZ . Indeed, the
map ϕ : X 7→ Y so that ϕ(0) = 2 and ϕ(1) = 1 is an isomorphism between ΞX and
ΞY , but there is no possible isomorphism between ΞX and ΞZ since the mass repartition
differs. The Gromov’s theorem states that for every r ≥ 2, PX ,r = PY ,r, but for some
r > 2, PX ,r ≠ PZ ,r. Indeed, we get that PX ,2 = PY ,2 = 10

16δ0 + 6
16δ1, whereas PZ ,2 =

1
2δ0 + 1

2δ1. Moreover, PX ,3 = PY ,3 = 28
64δ(0,0,0) + 12

64
(
δ(1,1,0) + δ(1,0,1) + δ(0,1,1)

)
, whereas

PZ ,3 = 1
4
(
δ(0,0,0) + δ(1,1,0) + δ(1,0,1) + δ(0,1,1)

)
.

2.1.2 Proof of the theorem
In this section, we prove that point 2 is a consequence of point 1 in Theorem 1. The idea is as
follows. Let (X , dX ,PX ) and (Y , dY ,PY ) be two mm spaces for which the measures PX ,r

and PY ,r coincide for every r ≥ 2. We build an isomorphism ψ̃ between these two mm spaces
as follows. First, we define an isomorphism ψ : x∗

i 7→ y∗
i on a dense countable subset of the

separable set X : {x∗
i , i ∈ N∗}. Then, we extend this isomorphism to an isomorphism ψ̃ from

X to Y , using Lemma 8. Finally, we prove that this isomorphism is one-to-one and onto,
and sends the measure PX to PY , using the monotone class lemma, after proving equality
of the measures PY and ψ̃♯(PX ) on a specific pi-system containing balls and intersections of
balls.

The precise proof is as follows. Let (X ,dX ,PX ) and (Y ,dY ,PY ) be two mm spaces
satisfying point 1 in Theorem 1. Let x∗ = (x∗

i )i∈N∗ be as above. Let R1 be the set of sphere
radii with center in x∗ that are problematic in the sense that the PX mass of one such
sphere does not vanish: R1 =

⋃
i∈N∗{ρ ∈ R+, PX (∂B(x∗

i , ρ)) > 0}. This set is a countable
subset of R+, as a countable union of countable sets. Then we can define a sequence of
non problematic radii (ρn)n∈N in R∗

+\R1, dense in R+, and set R = {ρn, n ∈ N} ∪ {∞}.
Then,

⋃
n∈N {ϕ : N 7→ R | ∀ i > n, ϕ(i) = ∞} is also countable. Thus, we can enumerate its

elements in a sequence (ϕn)n∈N∗ . Now, we define the map MX ,n : X n → R
3n2+n

2
+ for every

xn = (x1, . . . , xn) ∈ X n by:

MX ,n(xn) = (BX ,n(xn), IX ,n(xn), DX ,n(xn)) , (1)

with:
BX ,n(xn) = (PX (B(xi, ϕj(i)))))1≤i,j≤n, the masses of balls,
IX ,n(xn) =

(
PX

(⋂ℓ
i=1 B(xi, ϕj(i))

))
1≤j,ℓ≤n

, the masses of intersections of first balls,
DX ,n(xn) = (dX (xi, xj))1≤i<j≤n, the pairwise distance matrix.

According to Lemma 9, for every n ∈ N∗, the pushforwards MX ,n♯(P
⊗n
X ) and MY ,n♯(P

⊗n
Y )

coincide. Let (yn)n∈N∗ be a sequence of Y -valued sequences yn ∈ Y N, so that ∥MX ,n(x∗
n) −

MY ,n(yn
n)∥∞ ≤ 1

n , as given by Lemma 10, where yn
n = (yn

1 , . . . , y
n
n) and x∗

n = (x∗
1, . . . , x

∗
n)

are the vectors made of the first n coordinates of yn and x∗. A diagonal process, see Lemma
12, provides a subsequence of (yn)n∈N∗ whose ith coordinate converges to a point in Y , that
we denote by y∗

i . According to Lemma 14, y∗ = (y∗
i )i∈N satisfies MX ,n(x∗

n) = MY ,n(y∗
n) for
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every n ∈ N∗. In particular, it comes that the map ψ defined on x∗ by ψ(x∗
i ) = y∗

i is an
isometry since DX ,n(x∗

n) = DY ,n(y∗
n) for every n ∈ N∗. This isometry ψ can be extended

to an isometry ψ̃ on X that coincides with ψ on x∗, according to Lemma 8, since (Y ,dY )
is complete. Moreover, Lemma 15 yields that the sets ψ̃(X ) and Y are equal. Thus, ψ̃
is an isometry from X to Y . In addition, we get that y∗ is dense in Y . It remains to
prove that ψ̃♯(PX ) = PY . Note that the collection {

⋂ℓ
i=1(B(y∗

i , ϕj(i))) | j, ℓ ∈ N∗} is a
π-system, since it is stable by intersection. It generates the σ-algebra of Borel sets of Y ,
since it contains all balls centered at points in y∗, with radii in R. Moreover, the measures
PY and ψ̃♯(PX ) coincide on this π-system since we proved that IX ,n(x∗

n) = IY ,n(y∗
n) for

every n ∈ N. Thus, according to the monotone class lemma, the measures PY and ψ̃♯(PX )
coincide. This concludes the proof of Theorem 1.

2.2 A new metric based on the distributions of pairwise distance
matrices

2.2.1 Definition of the metric
Given two metric measure spaces ΞX = (X ,dX ,PX ) and ΞY = (Y ,dY ,PY ), given
α = (αr)r≥2 some weights in R+, µ = (µr)r≥2 a sequence of probability measures µr on
the sphere S

r(r−1)
2 −1, and ω a probability measure on R+ such that

∫ +∞
ρ=0 ρdω(ρ) < +∞, we

define the “pseudo-metric” dα,µ,ω between ΞX and ΞY by:

dα,µ,ω(ΞX ,ΞY ) =
+∞∑
r=2

αr

∫ +∞

ρ=0

∫
θ∈S

r(r−1)
2 −1

|ϕX ,r(ρθ) − ϕY ,r(ρθ)| dµr(θ)dω(ρ) (2)

where ϕX ,r(ρθ) = ED∼PX ,r
[exp(it⟨D, ρθ⟩)] is the characteristic function of the distribution of

r-samples pairwise distance matrices, PX ,r, defined in Section 2.1.1, at the point ρθ ∈ R
r(r−1)

2 .

▶ Proposition 3. Let α = (αr)r≥2 be some weights in R+, µ = (µr)r≥2 be a sequence of
probability measures µr on the sphere S

r(r−1)
2 −1, and ω be a probability measure on R+ such

that
∫ +∞

ρ=0 ρdω(ρ) < +∞.
If
∑+∞

r=2 rαr < +∞ and p = 2, or
∑+∞

r=2 r
3αr < +∞ and p = 1, then, dα,µ,ω is

a pseudo-metric on the set of all mm spaces with finite pth moment (i.e. such that∫
X dp

X (x, x0)dPX (x) < +∞ for some x0 ∈ X ), in the sense that, for every such mm
spaces ΞX , ΞY and ΞZ :
1. dα,µ,ω(ΞX ,ΞY ) ∈ R+

2. dα,µ,ω(ΞX ,ΞY ) = dα,µ,ω(ΞY ,ΞX )
3. dα,µ,ω(ΞX ,ΞY ) ≤ dα,µ,ω(ΞX ,ΞZ ) + dα,µ,ω(ΞZ ,ΞY ).
Moreover, if ΞX and ΞY are isomorphic, then, dα,µ,ω(ΞX ,ΞY ) = 0.

Under the additional assumptions that αr > 0 and Supp(µr) = S
r(r−1)

2 −1 for every r ≥ 2
and that Supp(ρ) = R+, then, dα,µ,ω is a metric in the sense that for every mm spaces ΞX

and ΞY : dα,µ,ω(ΞX ,ΞY ) = 0 if and only if ΞX and ΞY are isomorphic.

The proof of Proposition 3 is available in Section A.2.1.

2.2.2 Stability properties of the new metric
Given two metric measure spaces ΞX = (X , dX ,PX ) and ΞY = (Y , dY ,PY ) with finite pth
moment for some p ∈ {1, 2}, in this section, we show that the metric defined by (2) is stable
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with respect to Wasserstein and Gromov-Wasserstein distances. The p-Gromov-Wasserstein
distance between ΞX and ΞY , G W p(ΞX ,ΞY ) is defined in [22] by

G W p
p(ΞX ,ΞY ) = inf

π∈Π(PX ,PY )

∫
X ×Y

∫
X ×Y

(dX (x, x′) − dY (y, y′))p dπ(x, y)dπ(x′, y′), (3)

where Π(PX ,PY ) is the set of all transport plans (probability distributions) on X × Y

with first marginal PX and second marginal PY . Roughly, the p-Gromov-Wasserstein
distance corresponds to the minimal p-norm mean difference between the distance between
two independent random variables in X and the distance between two independent random
variables in Y . When (X ,dX ) and (Y ,dY ) are subspaces of a same space, then, the
p-Wasserstein distance between the two probability measures PX and PY , Wp(PX ,PY ), is
defined in [31] by

W p
p (PX ,PY ) = inf

π∈Π(PX ,PY )

∫
X

dp
X (x, y)dπ(x, y). (4)

▶ Proposition 4 (Stability). Let α, µ, ω, be as in Proposition 3. Given two metric measure
spaces ΞX = (X ,dX ,PX ) and ΞY = (Y ,dY ,PY ) with finite pth moment, we get that:

If p = 1:

dα,µ,ω(ΞX ,ΞY ) ≤

(+∞∑
r=2

αr

(
r(r − 1)

2

) 3
2
)(∫ +∞

ρ=0
ρdω(ρ)

)
G W 1(ΞX ,ΞY ).

Moreover, when the spaces (X , dX ) and (Y , dY ) are subspaces of a same space, we get
that:

dα,µ,ω(ΞX ,ΞY ) ≤ 2
(+∞∑

r=2
αr

(
r(r − 1)

2

) 3
2
)(∫ +∞

ρ=0
ρdω(ρ)

)
W1(PX ,PY ).

If p = 2:

dα,µ,ω(ΞX ,ΞY ) ≤

(+∞∑
r=2

αr

√
r(r − 1)

2

)(∫ +∞

ρ=0
ρdω(ρ)

)
G W 2(ΞX ,ΞY ).

Moreover, when the spaces (X , dX ) and (Y , dY ) are subspaces of a same space, we get
that:

dα,µ,ω(ΞX ,ΞY ) ≤ 2
(+∞∑

r=2
αr

√
r(r − 1)

2

)(∫ +∞

ρ=0
ρdω(ρ)

)
W2(PX ,PY ).

The proof of Proposition 4 is available in Section A.2.2. This proposition enhances that
two mm spaces close in terms of Gromov-Wasserstein or Wasserstein distance will be close
with respect to the new metric dα,µ,ω. In particular, this occurs when we have access to some
mm space ΞX = (X , dX ,PX ) through a sample of n points (X1 . . . , Xn). In this case, the
space ΞX is approximated by the discrete mm space ΞXn = (Xn,dX ,PXn), also called
empirical mm space, with Xn = {X1, . . . , Xn} and PXn

= 1
n

∑n
i=1 δXi

. If PX satisfies that∫
X dX (x, x0)pdPX (x) < +∞ for some x0 ∈ X and p ≥ 1, then, Wp(PX ,PXn

) converges
to 0, as n → +∞, almost surely. This property recalled for instance in [5, Theorem 2.13]
is a consequence of the Varadarajan theorem for separable metric spaces, that states the
convergence in distribution of PXn to PX , for almost every sample Xn from PX . As a
consequence, we get that:
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▶ Corollary 5. Let α, µ, ω, be as in Proposition 3. If ΞX is a mm space so that∫
X dp

X (x, x0)dPX (x) < ∞ for some x0 ∈ X (with p = 1 or p = 2), then, with probability 1,
we get that:

dα,µ,ω(ΞX ,ΞXn) → 0, as n → +∞.

According to Corollary 5, for large enough sample sizes, it will always be possible to distinguish
between two different mm spaces (cf. Section 3). Specific rates of convergence have been
derived in different contexts for the Wasserstein distance, see for instance [16, 33], just to
name a few. In particular, for the Euclidean space Rd, rates for the 1-Wasserstein distance
are of order n− 1

d . This rate gets very slow when the dimension increases, this is the curse of
dimensionality. The new distance that we propose to compare mm spaces does not suffer
from this. Indeed, we prove in Proposition 6, that for any mm space, when we have access to
this mm space only through a sample of n points, the difference between the unknown mm
space and the empirical mm space based on this sample is of order n− 1

2 , in terms of dα,µ,ω.
This corresponds to the classical parametric rate in statistics.

▶ Proposition 6. Let ΞX = (X ,dX ,PX ) be some metric measure space, and ΞXn =
(Xn, dX ,PXn

) be its empirical version, based on some n-sample. Then, for every ℓ > 0, we
get that, with probability at least 1 − n−ℓ:

dα,µ,ω(ΞX ,ΞXn
) ≤ E [dα,µ,ω(ΞX ,ΞXn

)] +
√

2ℓ log(n)
n

+∞∑
r=2

rαr,

with

E [dα,µ,ω(ΞX ,ΞXn)] ≤ 4√
n

+∞∑
r=2

√
rαr + 1

n

n∑
r=2

r2αr ≤ 5√
n

+∞∑
r=2

r
3
2αr.

The proof of Proposition 6 is available in Section A.2.3. The rates obtained in Proposition
6 are tight in the sense that for some discrete metric space with |X | = V , we get a lower
bound of order 1√

n
, as noticed in the following Example 7.

▶ Example 7. Let ΞX = (X ,dX ,PX ) be a mm space with |X | = V elements, so that
dX (x, y) = 1x ̸=y for every x, y ∈ X and PX = 1

V

∑
x∈X δx is the uniform measure on X .

For some absolute constant C > 0, we get that:

lim inf
n→+∞

E[dα,µ,ω(ΞX ,ΞXn
)] ≥ C

α2
∫ +∞

0 |1 − exp(iρ)| dω(ρ)
√
n

√
V

.

The proof of the lower bound in Example 7 is available in Section A.2.4.

2.2.3 Computational considerations
In practice, we may not have access to an mm space ΞX = (X ,dX ,PX ), but to an
empirical version ΞXn = (Xn,dX ,PXn), based on an n-sample (X1, . . . , Xn), generated
according to the distribution PX , where PXn

= 1
n

∑n
i=1 δXi

is the uniform measure on
Xn = {X1, . . . , Xn}. For fixed r ≥ 2, ρ > 0 and θ ∈ S

r(r−1)
2 −1, the computation of the

empirical characteristic function at the point ρθ:

ϕXn,r(ρθ) = 1
nr

∑
1≤i1,...,ir≤n

exp(i⟨
(
dX (Xiℓ

, Xij
)
)

1≤ℓ<j≤r
, ρθ⟩), (5)
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requires r(r−1)
2 nr operations. For large sample size n, this complexity is prohibitive. We may

prefer to use a bootstrap strategy, that consists, given B ∈ N∗, to generate B independent
samples from PXn

, (X b
n = (Xb

1, . . . , X
b
r))1≤b≤B . It means that Xb

1, . . . , X
b
r are picked from

Xn uniformly, independently and with replacement. Then, we estimate ϕXn,r(ρθ) with the
bootstrap version:

ϕ
boot,(B)
Xn,r (ρθ) = 1

B

B∑
b=1

exp(i⟨(dX (Xb
ℓ , X

b
j ))1≤ℓ,j≤r, ρθ⟩), (6)

or with its symmetrized version:

ϕ
boot,sym,(B)
Xn,r (ρθ) = 1

B

B∑
b=1

1
r!
∑

σ∈Sr

exp(i⟨(dX (Xb
σ(ℓ), X

b
σ(j)))1≤ℓ,j≤r, ρθ⟩). (7)

The summation over an infinite number of parameters r ≥ 2 is impossible in practice,
therefore, we may focus on truncated vectors α = (αr)r≥2 with αr = 0 for r ≥ R for some
fixed R ≥ 3. As well, the measures µr and ω may be chosen as discrete and finitely supported:
µr =

∑Nr

i=1 βr,iδθr,i
and ω =

∑Mr

i=1 γr,iδρr,i
for some non negative weights (βr,i)1≤i≤Nr

and
(γr,i)1≤i≤Mr with sum 1. The global complexity would then become

∑R
r=2 NrMr

r(r−1)
2 nr,

and respectively,
∑R

r=2 NrMr
r(r−1)

2 B for the bootstrap and
∑R

r=2 NrMr
r(r−1)

2 r!B for the
symmetrized bootstrap versions.

According to the Gromov’s theorem, given a finite number of mm spaces, it is always
possible to find discrete measures such that the pairwise dα,µ,ω-distances are all positive.
However, when the discrete measures are fixed in advance, there could exist two mm spaces
at 0 dα,µ,ω-distance. A strategy to deal with this issue would be to consider an equivalent l2
version of dα,µ,ω:

d̃α,µ,ω : (ΞX ,ΞY ) 7→
+∞∑
r=2

αr

∫ +∞

ρ=0

∫
θ∈S

r(r−1)
2 −1

|ϕX ,r(ρθ) − ϕY ,r(ρθ)|2 dµr(θ)dω(ρ).

These two versions are equivalent in the sense that:

1
2 d̃α,µ,ω(ΞX ,ΞY ) ≤ dα,µ,ω(ΞX ,ΞY ) ≤

√
d̃α,µ,ω(ΞX ,ΞY ).

There exists a closed form for d̃α,µ,ω. This closed form is obtained by following the proof of
[1, Lemma 1]:

d̃α,µ,ω(ΞX ,ΞY ) =
+∞∑
r=2

αr

( 1
n2r

n∑
i1,...,ir=1

n∑
j1,...,jr=1

u(DX
i1,...,ir

−DX
j1,...,jr

) (8)

+ 1
m2r

m∑
r1,...,rr=1

m∑
v1,...,vr=1

u(DY
r1,...,rr

−DY
v1,...,vr

) (9)

− 2
nrmr

n∑
i1,...,ir=1

m∑
j1,...,jr=1

u(DX
i1,...,ir

−DY
j1,...,jr

)
)
, (10)

where DX
i1,...,ir

= (dX (Xiℓ
, Xik

))1≤ℓ<k≤r and where u(t) is the real part of the characteristic
function of the distribution of ρθ, that is, u(t) =

∫
S

r(r−1)
2 −1

∫ +∞
0 cos(⟨ρθ, t⟩)dω(ρ)dµr(θ).

As noticed in [1, Example 1], when the distribution of ρθ is the
(

r(r−1)
2

)
-variate normal

distribution with mean 0 and variance-covariance matrix identity, then, u(t) = exp(− 1
2 ∥t∥2).
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3 Testing problems for mm spaces

3.1 Two-sample testing
Testing the equality of two measures from two samples using the characteristic function
has already been considered in the litterature, see [1] for instance. In the context of mm
spaces, we aim at testing H0:“ΞX and ΞY are isomorphic”, versus H1:“ΞX and ΞY are
not isomorphic”. This question has been considered in [7], using distance-to-measure (dtm)
signatures. In this paper, given a pseudo-metric d between mm spaces, we investigate tests
that reject H0 when the test statistic T = d(ΞXn

,ΞYm
) is larger than some critical value ĉα,

that depends on the level α ∈ (0, 1) of the test. We recall that the level of the test is defined
by the probability to make the wrong decision (i.e. reject H0) based on the test statistic
under H0. As mentioned in [1, Theorem 5], the problem is that under H0, the distribution
of the test statistic T depends on the mm space X . Solutions to this problem consists in
using boostrap or permutation to mimic the behaviour of the test statistic T under H0.
Both procedures are proved correct in the context of characteristic functions, [1, Theorems
3,4,5]. In the appendix, Section B, we focus on the permutation procedure, as described in
[1]. We compute the level and the power of the test under several alternatives. The power is
defined as the probability to make the right decision (i.e. reject H0) under an alternative
to hypothesis H0. Notice that for alternatives close to hypothesis H0, the power should be
close to the level α of the test. However, in the experiments in the appendix, the level is
sometimes larger than the parameter α. Therefore, we propose in this section a slightly less
powerful procedure that reaches the correct level, as follows:
1. Set N = min(n,m)/2
2. Consider a subsample of size N of Xn, XN , and a subsample of size N of Ym, YN .
3. Calculate TN,obs = d(XN ,YN ) from XN and YN .
4. Generate B subsamples of size N , X b

N from Xn.
5. Calculate T b

X ,N = d(X b
N ,X

b+(B/2)
N ) for each b ∈ {1, . . . , B/2}.

6. Generate B subsamples of size N , Y b
N from Ym.

7. Calculate T b
Y ,N = d(Y b

N ,Y
b+(B/2)

N ) for each b ∈ {1, . . . , B/2}.
8. Approximate the p-value of the test by:

p̂ =
Card{b ∈ {1, . . . , B/2}, T b

X ,N ≥ TN,obs} + Card{b ∈ {1, . . . , B/2}, T b
Y ,N ≥ TN,obs}

B
.

The power of the test with level α ∈ {0.05, 0.1} is estimated by P̂α = Card{m∈{1,...,M}, p̂m≤α}
M ,

after M = 1000 independent replications of the experiment. Since mm spaces encode both
an information about the shape and the measure, we illustrate the testing procedure in
two different frameworks. First, we generate points on the lp-ball in R2 with the following
procedure:

Xi = Zi

∥Zi∥p
= Zi

(Zp
i,1 + Zp

i,2)
1
p

with Z1, . . . , Zn i.i.d. from the standard normal distribution on R2. We test H0:“p1 = p2”,
against H1:“p1 ̸= p2”. Then, we generate points on the circle in R2 according to a von Mises
distribution Mθ,κ. Since two different parameters θ lead to isomorphic mm spaces, we test
equality of the concentration parameter: H0:“κ1 = κ2”, versus H1:“κ1 ̸= κ2”. This last
problem has been tackled in [29, 30].

We propose two different methods based on characteristic functions. First, we use
the closed form d̃R defined by (8), for αR = 1 and αr = 0 for r ̸= R, and d̃boot,R a
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bootstrapped version where means are approximated through 1000 random selections of
uplets (2-uplets for R = 2, 6-uplets for R = 3) of indices. Then, we consider dboot,R the
distance (2) with finitely supported measures µR and ω, for which the characteristic functions
are estimated by bootstrap as in (6). For R = 2, we evaluate the characteristic function at
t ∈ {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}, and for R = 5, at t ∈ {(0.5) ∈ R

2(2−1)
2 , (0.5, 0.5, 0.5) ∈

R
3(3−1)

2 , . . . , (0.5, . . . , 0.5) ∈ R
5(5−1)

2 }. As an alternative, we consider dshp, the 1-Wasserstein
distance (i.e. the L1-norm between the quantile functions) between the shape signatures
(i.e. PXn,r and PYm,r for r = 2). The second alternative that we consider is ddtm,h, the
1-Wasserstein distance between the DTM-signatures of [7]. The DTM-signature is the
distribution of the root mean square of the distances of points in Xn to their hn-nearest
neighbours in Xn, for some parameter h ∈ (0, 1). The power of the tests are provided in
Table 1 for the test on the parameter p of the lp-ball, and in Table 2 for the test on the
parameter κ of the von Mises distribution. Our new methods are good competitors for the
von Mises distributions, and they outperform the other methods for the lp-balls alternatives.
The levels are correct, of order 5% (middle line).

p2 dboot,2 dboot,5 dshp ddtm,0.05 ddtm,0.5 ddtm,1

1.4 0.285 0.425 0.191 0.052 0.055 0.098
1.45 0.113 0.157 0.088 0.062 0.068 0.08
1.5 0.055 0.061 0.066 0.054 0.07 0.076
1.55 0.102 0.167 0.089 0.073 0.072 0.072
1.6 0.241 0.435 0.148 0.064 0.071 0.085

Table 1 Two-sample test, lp-balls, p1 = 1.5, sample sizes n = m = 100, α = 0.05.

p2 dboot,2 dboot,5 dshp ddtm,0.05 ddtm,0.5 ddtm,1

1.0 0.668 0.637 0.704 0.331 0.666 0.696
1.5 0.228 0.199 0.236 0.112 0.220 0.236
2.0 0.066 0.067 0.060 0.053 0.067 0.062
2.5 0.144 0.129 0.151 0.095 0.143 0.146
3.0 0.395 0.343 0.424 0.184 0.381 0.437

Table 2 Two-sample test, von Mises distribution, κ1 = 2.0, sample sizes n = m = 100, α = 0.05.

The computational time (is seconds) of pseudo-distances are available in Table 3, after
1000 Monte Carlo replications (10 for method 2 with sample size 20, and method 1 with
sample size 100).

n d̃2 d̃3 d̃boot,2 d̃boot,3 dboot,2 dboot,5 dshp ddtm,0.05 ddtm,1

5 2.48e-5 1.31e-3 0.11e-3 4.08e-3 1.26e-3 3.12e-3 1.77e-6 1.34e-6 1.65e-6
10 0.28e-3 0.1157 0.11e-3 4.06e-3 1.55e-3 3.49e-3 1.14e-5 3.66e-6 3.91e-6
20 4.29e-3 8.3077 0.11e-3 4.11e-3 1.65e-3 4.00e-3 1.00e-5 1.08e-5 3.13e-5
50 0.2764 *** 0.10e-3 4.10e-3 1.29e-3 3.18e-3 5.58e-5 8.61e-5 8.25e-5
100 3.5973 *** 0.11e-3 4.07e-3 1.24e-3 3.00e-3 0.21e-3 0.38e-3 0.36e-3
1000 *** *** 0.36e-3 4.72e-3 1.77e-3 4.36e-3 0.0257 0.0400 0.0426

Table 3 Pseudo-distances computational time
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This computational time does not take into account the computational time of the distance
matrix of the pooled sample, that should be done for all of the methods. Notice that the
computational time does not change for dboot,2 and dboot,5 nor for d̃boot,2 and d̃boot,3 since
the number of bootstrap replications has been fixed to 1000, whatever the sample size. In
practice, the largest the sample size n, the largest this number of replications should be.

3.2 Goodness-of-fit tests
Goodness-of-fit tests with the characteristic function have been studied in the litterature to
test if a sample has been generated from a fixed probability measure, for instance on the
sphere in [15]. In this section, we consider the problem of testing that some mm space ΞX is
isomorphic to some fixed mm space ΞX0 , given an n-sample from ΞX . The hypotheses are
therefore: H0:“ΞX is isomorphic to ΞX0” and H1:“ΞX is not isomorphic to ΞX0”. As for
two-sample tests, if the test statistic properly renormalised converges to a fixed distribution
as the sample size goes to ∞, then, the limit distribution depends on the mm space ΞX0 .
Therefore, we use a Monte Carlo procedure to approximate the distribution of the test
statistic under H0. For this, we use B n-samples generated independently from ΞX0 . The
procedure is as follows:
1. Compute a discrete approximation of the mm space ΞX0 , based on N points, N large,

X0,N . (For instance, a regular grid on the circle if ΞX0 is the circle equipped with the
uniform probability measure)

2. Calculate Tn,obs = d(Xn,X0,N ) from the original sample Xn and X0,N .
3. Generate B samples (X b

n )1≤b≤B from ΞX0 .
4. Calculate T b

n = d(X b
n ,X0,N ) for each b ∈ {1, . . . , B}.

5. Approximate the p-value of the test by p̂ = Card{b∈{1,...,B}, T b
n≥Tn,obs}

B .
The power of the test with level α ∈ {0.05, 0.1} is estimated by P̂α = Card{m∈{1,...,M}, p̂m≤α}

M ,
after M = 1000 independent replications of the experiment.

The problem of testing uniformity on the circle or on the sphere has been widely considered
[26, 4, 17, 8, 9]. In this paper, we use our goodness-of-fit test to test that a sample has been
generated from the uniform distribution on the circle. We compare its performances to the
classical Rayleigh and Bingham tests. This test is well suited for testing uniformity on the
circle or on the sphere. Indeed, given that two measures equal up to a rotation on the sphere
are isomorphic, the uniform distribution is the only distribution on the sphere, isomorphic to
no other distribution. We compare performances of the procedure with the pseudo-metric
dboot,R (with characteristic function evaluation at t ∈ {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0} for
R = 2, and at t ∈ {(0.5) ∈ R

2(2−1)
2 , (0.5, 0.5, 0.5) ∈ R

3(3−1)
2 , . . . , (0.5, . . . , 0.5) ∈ R

5(5−1)
2 } for

R = 5) against classical Rayleigh and Bingham tests of uniformity, and against the new
test of [8], ddtm, based on the DTM signature (we used the iidness version, with a selection
parameter procedure, with varying parameter h in [0.1, 0.2, 0.5, 1]). The performance results
are available in Table 4, 5 and 6. The alternatives we consider are: measures on lp-balls and
von Mises distributions, as in Section 3.1, but also mixtures of 4 von Mises distributions with
the same concentration parameter κ, with centers given by the 4 vertices of a square, and
with the same mass on each of the 4 components of the mixture.

If the Rayleigh and the Bingham tests have no power for mixtures alternatives on the
circle [9], as also noticed in Table 6, our tests are performant, although not as much as
the most powerful existing test ddtm, [8], up to our knowledge. Our tests are almost as
performant as the Rayleigh test that is optimal for von Mises alternatives. Moreover, unlike
our new test, none of the Rayleigh, Bingham and DTM-signature-based test [8] show power
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under lp-ball alternatives. This makes sense since the directions of the sample points are
uniformly distributed on the circle for these alternatives. It should be noticed that the
performance of our test depends on the choice of parameters as well as on the alternatives.

p dboot,2 dboot,5 Rayleigh Bingham ddtm

1.8 1.0 1.0 0.046 0.041 0.047
1.85 0.728 0.94 0.045 0.053 0.043
1.9 0.396 0.929 0.057 0.047 0.07
1.95 0.327 0.146 0.048 0.047 0.052
2.0 0.05 0.037 0.042 0.053 0.043

Table 4 Uniformity test, lp-ball, sample size n = 100, α = 0.05.

κ dboot,2 dboot,5 Rayleigh Bingham ddtm

0 0.046 0.054 0.049 0.041 0.047
0.1 0.067 0.073 0.083 0.049 0.072
0.2 0.069 0.179 0.216 0.051 0.190
0.5 0.600 0.788 0.892 0.078 0.840
1 0.999 1.0 1.0 0.247 1.0
2 1.0 1.0 1.0 0.983 1.0
5 1.0 1.0 1.0 1.0 1.0

Table 5 Uniformity test, von Mises distribution, sample size n = 100, α = 0.05.

p dboot,2 dboot,5 Rayleigh Bingham ddtm

0 0.071 0.064 0.068 0.058 0.078
10 0.475 0.068 0.057 0.048 0.95
20 0.999 0.083 0.059 0.064 1.0
50 0.990 0.119 0.040 0.071 1.0
300 1.0 0.224 0.05 0.082 1.0

Table 6 Uniformity test, mixture of 4 von Mises distributions, sample size n = 100, α = 0.05.

4 Learning for metric measure spaces

Let (ΞX ℓ
nℓ
, Yℓ)ℓ∈L be a training dataset of Card(L) labelled mm spaces, with Yℓ a random

variable that is {0, 1}-valued (or D-valued for some finite set D) for the problem of
classification. In this section, we propose new learning methods. Roughly, we develop
a new classifier f that assigns to any given new mm space ΞXn

, a label f(ΞXn
). This label is

supposed to approximate well the unknown variable Y associated to ΞXn . The performance of
any function f is measured in terms of missclassification error rate 1

CardT

∑
t∈T 1Yt ̸=f(ΞX t

nt
),

on a testing dataset (ΞX t
nt
, Yt)t∈T . This problem has been tackled in [22], where a k-nearest-

neighbours classifier is proposed. Roughly, to a new mm space ΞXn
, we associate the label

that appears the most often among the k nearest neighbours of ΞXn in the training set. In
[22], the Gromov-Wasserstein distance is used to compute nearest neighbours. In this paper,
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we investigate the use of the statistic defined in (6) combined with classical learning methods
(convolutional neural networks) for the problem of digits recognition and shape detection.

4.1 Digits classification
In this section, we complete classification task on the famous MNIST digits dataset. We
compare our method to a classical convolutional neural network (CNN) on the 8 × 8-sized
digits images, from the load_digits function of the sklearn.datasets Python library.
Each image has been turned into a dataset by assigning an integer weight to the pixel centers,
proportional to the gray level of the pixel. The network structures used are as follows:

CNN images: Conv((3,3),(1,6),relu,MaxPool(2,2)); Flatten; Dense(54,20,relu);
Dense(20,10); softmax,
NN images: Flatten; Dense(64,128,relu); Dense(128,10); softmax,
Characteristic function: Dense(4,15,relu); Dense(15,10,sigmoid); softmax.

For the error computations, we made 50 replications of the experiment with 80% of data
for learning and 20% for testing. We made epoch=20 complete pass through the training
dataset for learning. For the characteristic functions based method, we used parameters
R × Θ = {(0.5), (0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5, 0.5), (0.5, 0.5, 0.5, 0.5, 0.5)}. As noticed
in Figure 1, our method is a serious competitor to classical CNN. The median error represented
by a line is in favor of our method. Moreover, the computational time is much smaller.

Figure 1 Misclassification rate for MNIST dataset classification.

4.2 Application to shape detection
In this section, we focus on the problem of classification, where a shape is labeled either
as a segment or as a circle. Our method has been trained on a dataset of 11 circle-labeled
50-samples (from lp-balls as in Section 3.1, with p in {1, 1.1, . . . , 2}), and 11 segment-labeled
50-samples (uniform from the segment [0, 1]).

We consider a dataset represented in Figure 2. It has been generated from 5 lp-balls,
with the following parameters (sample size, p, radius, center): (3000, 1.7, 4.5, [0, 0]),
(1500, 2, 2.5, [4, 0]), (500, 1.2, 1, [−2, 2]), (1000, 1.8, 2, [1,−1]), (500, 1.3, 0.8, [−3,−3]). For
parameters p close to 1, the lp-balls look like squares and can be considered as a union of 4
segments, whereas for parameters p close to 2, the lp-balls look like regular circles. We aim
at extracting points from lp-balls with small parameter p (in purple in Figure 2) and points
from lp-balls with large parameter p (in yellow), from the knowledge of the positions of the
6500 points only. For this, we proceed as follows:
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We turn each datapoint in R2 into a datapoint in the Euclidean space R6 by associating
to the position of the point, the coordinates of the projection matrix onto its normal
vector. This projection matrix is approximated using the Python notebook from [10].
We use the ToMATo clustering algorithm [13], from the Python Gudhi library [25], to
recover 11 components, as guided by the 11 points far from the diagonal of the persistence
diagram in Figure 2. We used the parameters graph_type=’knn’, density_type=’logDTM’,
k = 30, k_DTM = 50.
Finally, we apply our classification algorithm (the same as the one in previous section) to
each of the 11 components, trained on the 22-sized dataset. The result is represented in
Figure 2 (right).

Figure 2 Persistence diagram for ToMATo algorithm (left), resulting clustering in 11 components
(middle), (right) components are colored in purple if considered as segments by our learning algorithm
and in yellow if considered as circles.

The result looks very satisfactory. We recover circle-shaped lp-balls in yellow and squared-
shaped lp-balls in purple.

5 Conclusion and Perspectives

In this paper, we have introduced and studied a new metric to compare mm spaces up to
an isomorphism. Unlike the Gromov-Wasserstein distance, this new metric does not suffer
from the curse of dimensionality, in the sense that an mm space can be approximated at a
parametric rate n− 1

2 from an n-sample. Moreover, we have proposed fast computationally
tractable alternatives to this new metric. We have used this new metric and these alternatives
to derive two-sample and goodness-of-fit tests to compare mm spaces from samples and in
particular a new test of uniformity on the sphere. We have also developped a new learning
procedure for learning on mm spaces. If this new method consists in assigning to any mm
space, a value in the Euclidean space, and then to apply learning methods on the Euclidean
space, as for instance neural networks, it should be interesting to develop a new neural
networks structure specific to data like pairwise distance matrices. Such structures should
be able to learn on matrices with potentially different size, as the new procedure introduced
in this paper.
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A Proofs

A.1 Proof of Gromov’s mm spaces reconstruction theorem
In this section, we provide lemmas together with their proofs that we use to prove the
Gromov’s mm spaces reconstruction theorem, Theorem 1.

A.1.1 Lemma 8 and its proof
▶ Lemma 8 (Isometries extension theorem). Let (X , dX ) and (Y , dY ) be two metric spaces,
with (Y ,dY ) complete. Let A be a dense subset of X and f : A → Y an isometry. Then,
there exists a unique isometry g : X → Y that coincides with f on A.

Proof. For every sequence (xn)n∈N in A converging to x ∈ X , (f(xn))n∈N is Cauchy in the
complete space Y since f is an isometry, thus (f(xn))n∈N converges to some limit g(x) ∈ Y .
Note that this limit does not depend on the sequence (xn)n∈N. The map g built in this way
is an isometry. ◀

A.1.2 Lemma 9 and its proof
▶ Lemma 9. If PX ,r = PY ,r for every r ∈ N, then, for every n ∈ N∗:

MX ,n♯(P
⊗n
X ) = MY ,n♯(P

⊗n
Y ),

https://doi.org/10.1080/10485250801948294
https://doi.org/10.1080/10485250801948294
https://gudhi.inria.fr/doc/3.11.0/
https://api.semanticscholar.org/CorpusID:123909479
https://api.semanticscholar.org/CorpusID:123909479
https://doi.org/10.1080/10485252.2015.1041945
https://doi.org/10.1016/j.jspi.2017.05.009
https://doi.org/10.1016/j.jspi.2017.05.009
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.3150/18-BEJ1065
https://doi.org/10.3150/18-BEJ1065


C. Brécheteau and T. Verdebout 17

with MX ,n and MY ,n defined in (1).

Proof. The image of the map MX ,n is contained in Rd
+ with d = 5n2−n

2 . According to
the monotone class lemma, proving equality of the probability measures MX ,n♯(P

⊗n
X ) and

MY ,n♯(P
⊗n
Y ) boils down to prove that they coincide on the π-system {]a1, b1[× . . .]ad, bd[|

(ai, bi) ∈ Q2, ai < bi}. Let d′ = 2n2. For every i ∈ {1, . . . , d′}, we approximate 1]ai,bi[ with a
bounded continuous function αℓ,i equal to 1 on ]ai − 1

ℓ , bi + 1
ℓ [ and 0 on ]ai, bi[c for ℓ large

enough. So, limℓ→∞
∫

[0,1]d′ ×Rd−d′
+

∏d′

i=1 αℓ,i(ti)
∏d

i=d′+1 1]ai,bi[(ti)dMX ,n♯(P
⊗n
X )(t1, . . . , td)

equals MX ,n♯(P
⊗n
X )(]a1, b1[× . . .×]ad, bd[). It remains to prove equality of the integrals

associated to both measures, for every αℓ,is. The Stone-Weierstrass theorem entails that the
integrals

∫
[0,1]d′ ×Rd−d′

+
α(t1, . . . , td′)

∏d
i=d′+1 1]ai,bi[(ti)dMX ,n♯(P

⊗n
X )(t1, . . . , td) are equal for

the two measures MX ,n♯(P
⊗n
X ) and MY ,n♯(P

⊗n
Y ), for every bounded continuous function

α defined on [0, 1]d′ since they coincide for every polynomial function α, as noted in [19,
Theorem 3 1/2.5.]. This last results follows from the fact that PX ,r and PY ,r coincide for
every r ∈ N∗ and from Fubini-Tonelli theorem. For instance, for r = 2, we get:∫

X

PX (B(x, ρ))dPX (x) =
∫

X ×X

1dX (x,x′)≤qdP⊗2
X (x, x′)

=
∫

Y ×Y

1dY (y,y′)≤qdP⊗2
Y (y, y′) =

∫
Y

PY (B(y, ρ))dPY (y).

◀

A.1.3 Lemma 10 and its proof
▶ Lemma 10. Let x∗ be as defined in Section 2.1.2. Then, we can build a sequence (yn)n∈N∗

of sequences yn = (yn
1 , y

n
2 , . . . , y

n
n , a, a, . . .) in Y N with a fixed point a ∈ Y , such that for

every n ∈ N∗, ∥MX ,n(x∗
n) −MY ,n(yn

n)∥∞ ≤ 1
n . That is,

∀ i, j ∈ {1, . . . , n}, |PX (B(x∗
i , ϕj(i))) − PY (B(yn

i , ϕj(i)))| ≤ 1
n ,

∀ j, ℓ ∈ {1, . . . , n}, |PX (
⋂ℓ

i=1 B(x∗
i , ϕj(i))) − PY (

⋂ℓ
i=1 B(yn

i , ϕj(i)))| ≤ 1
n ,

∀ i, j ∈ {1, . . . , n}, |dX (x∗
i , x

∗
j ) − dY (yn

i , y
n
j )| ≤ 1

n .

Proof. Since Supp(PX ) = X , x∗
n = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ Supp

(
P⊗n

X

)
. It yields that for every

η > 0, P⊗n
X (B(x∗

n, η)) > 0. Moreover, according to Lemma 11, MX ,n is continuous on X n.
Thus, for every ϵ > 0, there exists η > 0 such that B(x∗

n, η) ⊂ {zn = (z1, z2, . . . , zn) ∈
X n | ∥MX ,n(x∗

n) − MX ,n(zn)∥∞ ≤ ϵ}. It holds that MX ,n(x∗
n) ∈ Supp

(
MX ,n♯(P

⊗n
X )
)

.
According to Lemma 9, the distributions MX ,n♯(P

⊗n
X ) and MY ,n♯(P

⊗n
Y ) coincide. Thus,

MX ,n(x∗
n) ∈ Supp

(
MY ,n♯(P

⊗n
Y )
)

, and ∀ ϵ > 0, MY ,n♯(P
⊗n
Y )(B(MX ,n(x∗

n), ϵ)) > 0. It
yields that for every n ∈ N∗, there exists yn

n = (yn
1 , y

n
2 , . . . , y

n
n) ∈ Y n = Supp

(
P⊗n

Y

)
that

satisfies ∥MY ,n(yn
n) −MX ,n(x∗

n)∥∞ ≤ 1
n .

◀

A.1.4 Lemma 11 and its proof

▶ Lemma 11. For every n ∈ N∗, the map MX ,n : X n → R
5n2−n

2
+ defined in (1) is continuous.

Proof. We equip the space X n with the metric dn
X defined for every xn = (x1, x2, . . . , xn)

and zn = (z1, z2, . . . , zn) by dn
X (xn, zn) = max1≤i≤n(dX (xi, zi)). Consider a converging

sequence (zk
n)k∈N = ((zk

1 , z
k
2 , . . . , z

k
n))k∈N in X n, with limit xn = (x1, x2, . . . , xn). Then
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|dX (zk
i , z

k
j )−dX (xi, xj)| ≤ 2dn

X (xn, zk
n) converges to zero when k goes to infinity. Moreover,

PX (B(zk
i , ϕj(i))) ≤ PX (B(xi, ϕj(i) + dn

X (xn, zk
n))). Thus, lim supk→∞ PX (B(zk

i , ϕj(i))) ≤
PX (B(xi, ϕj(i))). As well, lim infk→∞ PX (B(zk

i , ϕj(i))) ≥ PX (B(xi, ϕj(i))). Consequently,
by definition of ϕj , PX (B(xi, ϕj(i))) = PX (B(xi, ϕj(i))) = limk→∞ PX (B(zk

i , ϕj(i))). The
same result holds for the intersections of balls. Thus, the map MX ,n is continuous. ◀

A.1.5 Lemma 12 and its proof
▶ Lemma 12. Let (yn)n∈N∗ be a Y N-valued sequence defined as in Lemma 10. Then, we
can build a subsequence of (yn)n∈N∗ such that for every i ∈ N∗, the ith coordinate of yn, yn

i ,
converges to a point y∗

i in Y .

Proof. According to Lemma 10, (yn)n∈N∗ is built such that for every i, j ∈ {1, . . . , n},
|PX (B(yn

i , ϕj(i))) − PX (B(x∗
i , ϕj(i)))| ≤ 1

n . For every ϵ > 0, there exists N ∈ N∗ such that
0 < ϕN (i) < ϵ. Thus, for every n ≥ N , PX (B(yn

i , ϵ)) ≥ PX (B(x∗
i , ϕN (i))) − 1

n . And for n
large enough, PX (B(yn

i , ϵ)) ≥ 1
2 PX (B(x∗

i , ϕN (i))) which is positive since x∗
i ∈ Supp(PX ).

Thus, from any subsequence of (yn
i )n∈N∗ we extract a converging subsequence, according

to Lemma 13. In order to make the sequences (yn
i )n∈N∗ for i ∈ N∗ converge simultaneously,

we apply a diagonal process.
◀

A.1.6 Lemma 13 and its proof
▶ Lemma 13. Let (xn)n∈N be a sequence in a complete metric space (X , dX ) equipped with
a Borel probability measure PX , such that for every ϵ > 0 there exists c > 0 and N > 0 such
that for every n ≥ N , PX (B(xn, ϵ)) > c. Then, a converging subsequence can be extracted
from (xn)n∈N.

Proof. For ϵ > 0, let c and N be defined such that for every n ≥ N , PX (B(xn, ϵ)) > c. Let
L(ϵ) = sup{m ∈ N∗ | ∃n1, n2, . . . nm ≥ N, ∀ i ̸= j ∈ {1, . . . ,m}, B(xni

, ϵ) ∩ B(xnj
, ϵ) = ∅}.

Since L(ϵ) ≤ 1
c < ∞, let (xn∗

ℓ
)1≤ℓ≤L(ϵ) be L(ϵ) points satisying the previous condition. Then,

by construction, X =
⋃L(ϵ)

ℓ=1 B(xn∗
ℓ
, 2ϵ). Thus, there is a ball of radius 2ϵ containing an

infinite subsequence of (xn)n∈N∗ . We denote any such infinite subsequence by S ((xn)n∈N, ϵ).
To build a converging subsequence (zn)n∈N∗ , we proceed as follows. First set z1 = x1
and keep S1 = S ((xn)n∈N, 1) \ {z1}. For n ∈ N∗, select for zn+1 the first element of
Sn+1 = S

(
Sn,

1
n+1

)
\ {zn}. Then (zn)n∈N∗ is a subsequence of (xn)n∈N∗ which is Cauchy in

a complete metric space, thus converging. ◀

A.1.7 Lemma 14 and its proof
▶ Lemma 14. Let y∗ = (y∗

i )i∈N∗ be a sequence defined as in Lemma 12. Then,
1. ∀ j, ℓ ∈ N∗, PY

(⋂ℓ
i=1 B(y∗

i , ϕj(i))
)

= PX

(⋂ℓ
i=1 B(x∗

i , ϕj(i))
)

2. ∀ i, j ∈ N∗, dX (x∗
i , x

∗
j ) = dY (y∗

i , y
∗
j ).

Proof. Point 2 is a direct consequence of the triangular inequality, Lemma 10 and the
definition of y∗ given by Lemma 12. We now focus on the proof of point 1. According to
Lemma 10, with the notation therein, we get that for every n ∈ N∗,

∀ j, ℓ ∈ {1, . . . , n},

∣∣∣∣∣PX

(
ℓ⋂

i=1
B (x∗

i , ϕj(i))
)

− PY

(
ℓ⋂

i=1
B (yn

i , ϕj(i))
)∣∣∣∣∣ ≤ 1

n
.



C. Brécheteau and T. Verdebout 19

For j, i ∈ N∗, we can define ϕj,i =
(
ϕnj,i

k
(i)
)

k∈N∗
, an increasing sequence converging to

ϕj(i), which is a subsequence of (ϕn(i))n∈N∗ defined in Section 2.1.2. Now, let j, ℓ ∈ N∗.
Then, for every k ∈ N∗, there exists some m ∈ N satisfying dY (y∗

i , y
m
i ) ≤ ϕj(i) −ϕnj,i

k
(i) and

m ≥ nj,i
k for every 1 ≤ i ≤ ℓ. Then, we get that

⋂ℓ
i=1 B (y∗

i , ϕj(i)) ⊃
⋂ℓ

i=1 B
(
ym

i , ϕnj,i
k

(i)
)

,

and PY

(⋂ℓ
i=1 B (y∗

i , ϕj(i))
)

≥ PY

(⋂ℓ
i=1 B

(
ym

i , ϕnj,i
k

(i)
))

≥ PX

(⋂ℓ
i=1 B

(
x∗

i , ϕnj,i
k

(i)
))

−
1
m . By making m and then k go to infinity, we get that PX

(⋂ℓ
i=1 B (x∗

i , ϕj(i))
)

≤

PY

(⋂ℓ
i=1 B (y∗

i , ϕj(i))
)

. Similarly, PX

(⋂ℓ
i=1 B (x∗

i , ϕj(i))
)

≥ PY

(⋂ℓ
i=1 B (y∗

i , ϕj(i))
)

.

Since the functions ϕj are R-valued, PX

(⋂ℓ
i=1 B (x∗

i , ϕj(i))
)

= PX

(⋂ℓ
i=1 B (x∗

i , ϕj(i))
)

and the result follows. ◀

A.1.8 Lemma 15 and its proof
▶ Lemma 15 (Equality of ψ̃(X ) and Y ). Let ψ̃ be the isometry defined on X that is the
extension of the isometry that sends x∗ to y∗, as defined in Lemma 10 and Section 2.1.2.
Then, ψ̃(X ) = Y .

Proof. First note that ψ̃(X ) is a closed subset of the complete space Y . For the sake of
contradiction, assume that ψ̃(X ) ̸= Y and choose y ∈ Y \ψ̃(X ). Then, for some ϵ > 0,
B(y, ϵ) ⊂ Y \ψ̃(X ). Since y ∈ Supp(PY ) = Y , PY (B(y, ϵ

2 )) > 0. Let ρ ∈ R (with R defined
in Section 2.1.2) be such that ρ < ϵ

2 , then PY (Y \B(y, ϵ
2 )) ≥ limn→∞ PY (

⋃
i≤n B(y∗

i , ρ)).
The Poincaré’s formula and Lemma 14 (with j chosen such that for every i ∈ {1, . . . , n},
ϕj(i) = ρ) yield PX (

⋃
i≤n B(x∗

i , ρ)) = PY (
⋃

i≤n B(y∗
i , ρ)). By making n go to infinity, it

holds that 1 = PX (X ) = PY (Y \B(y, ϵ
2 )), which is a contradiction.

◀

A.2 Proof of results from Section 2.2
A.2.1 Proof of Proposition 3
First recall that the function x ∈ R 7→ exp(ix) ∈ C is 1-Lipschitz: ∀x, y ∈ R, |exp(ix) − exp(iy)| ≤
|x− y|. As a consequence, for every ρ ≥ 0 and θ ∈ S

r(r−1)
2 −1 for r ≥ 2, the difference ∆r(ρθ)

between the characteristic functions at ρθ is bounded by:

∆r(ρθ) := |ϕX ,r(ρθ) − ϕY ,r(ρθ)|

=
∣∣∣∣∫

X r

exp(i⟨ρθ,DX ,r(xr)⟩)dP⊗r
X (xr) −

∫
Y r

exp(i⟨ρθ,DY ,r(yr)⟩)dP⊗r
Y (yr)

∣∣∣∣
≤ ρ

∫
X r×Y r

∥DX ,r(xr) −DY ,r(yr)∥ dπ⊗r(xr,yr),

according to the Cauchy-Schwarz inequality and since ∥θ∥ = 1, for any transport map
π ∈ Π(PX ,PY ) (as defined in Section 2.2.2). Moreover, using the fact that for non negative
real numbers x1, . . . , xD,

√∑D
i=1 x

2
i ≤

√
D
∑D

i=1 xi with D = r(r−1)
2 , we get that:

∆r(ρθ) ≤ ρ

(
r(r − 1)

2

) 3
2
∫

X ×Y

∫
X ×Y

|dX (x, x′) − dY (y, y′)| dπ(x, y)dπ(x′, y′) (11)

≤ 2ρ
(
r(r − 1)

2

) 3
2
(∫

X

dX (x, x0)dPX (x) +
∫

Y

dX (y, y0)dPY (y)
)
, (12)
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for some x0 ∈ X and some y0 ∈ Y . Alternatively, we also get that:

∆r(ρθ) ≤ ρ

√∫
X r×Y r

∑
1≤i<j≤r

|dX (xi, xj) − dY (yi, yj)|2 dπ⊗r(xr,yr) (13)

= ρ

√ ∑
1≤i<j≤r

∫
X ×Y

∫
X ×Y

|dX (xi, xj) − dY (yi, yj)|2 dπ(xi, yi)dπ(xj , yj) (14)

= ρ

√
r(r − 1)

2

√∫
X ×Y

∫
X ×Y

|dX (x1, x2) − dY (y1, y2)|2 dπ(x1, y1)dπ(x2, y2)

(15)

≤ 2ρ
√
r(r − 1)

2

√∫
X

d2
X (x, x0)dPX (x) +

∫
Y

d2
Y (y, y0)dPY (y). (16)

This proves point 1 under the two sets of hypotheses. The symmetry (point 2) and the
triangular inequality (point 3) are direct. The additional points concerning the isomorphisms
are a direct consequence of the Gromov’s Theorem, recalled in Theorem 1, and the fact that
two probability distributions on a Euclidean space are equal if and only if their characteristic
functions coincide on this space.

A.2.2 Proof of Proposition 4
For p = 2, according to (15) and the definition of the Gromov-Wasserstein distance, we get
that:

∆r(ρθ) ≤ ρ

√
r(r − 1)

2 G W 2(ΞX ,ΞY ).

Moreover, when the spaces (X , dX ) and (Y , dY ) are equal, since |dX (x1, x2) − dY (y1, y2)|2 ≤
|dX (x1, y1) + dX (x2, y2)|2 ≤ 2dX (x1, y1)2 +2dX (x2, y2)2, it follows that for every transport
map π ∈ Π(PX ,PY ), ∆r(ρθ) ≤ 2ρ

√
r(r−1)

2

√∫
X ×Y dX (x, y)2dπ(x, y). Therefore,

∆r(ρθ) ≤ 2ρ
√
r(r − 1)

2 W2(PX ,PY ).

The inequalities follow using Fubini-Tonelli theorem.
For p = 1, the results follows from (11).

A.2.3 Proof of Proposition 6
First, we use the bounded differences inequality [6, Theorem 6.2]. If g(X1, . . . , Xn) =
dα,µ,ω(ΞX ,ΞXn

), we get that |g(X1, . . . , Xi, . . . , Xn) − g(X1, . . . , X
′
i, . . . , Xn)| ≤ ci for every

Xi, X
′
i ∈ X , with ci =

∑+∞
r=2 αr × 2nr−(n−1)r

nr ≤ 2
n

∑+∞
r=2 rαr, since nr − (n − 1)r is the

number of configurations of r-uplets in Xn in which Xi does not appear. Therefore, for every
ℓ > 0, with probability at least 1 − n−ℓ:

dα,µ,ω(ΞX ,ΞXn
) ≤ E[dα,µ,ω(ΞX ,ΞXn

)] +
√

2ℓ log(n)
n

+∞∑
r=2

rαr.

Now, we focus on the expectation term, that becomes, using Fubini-Tonelli Theorem:

E[dα,µ,ω(ΞX ,ΞXn
)] =

+∞∑
r=2

αr

∫ +∞

ρ=0

∫
θ∈S

r(r−1)
2 −1

E |ϕX ,r(ρθ) − ϕXn,r(ρθ)| dµr(θ)dω(ρ).
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If r ≥ n, we have that:

E |ϕX ,r(ρθ) − ϕXn,r(ρθ)| ≤ 2.

Assume that r < n, then, we have that:

E |ϕX ,r(ρθ) − ϕXn,r(ρθ)| = E

∣∣∣∣∣∣ϕX ,r(ρθ) − 1
nr

∑
1≤i1,...,ir≤n

exp(i⟨Di1,...,ir , ρθ⟩)

∣∣∣∣∣∣
≤ Ar

n

nr
E

∣∣∣∣∣∣ 1
Cr

n

∑
1≤i1<...<ir≤n

(ϕX ,r(ρθ) − Yi1,...,ir )

∣∣∣∣∣∣+ 2n
r −Ar

n

nr
.

where Di1,...,ir
= (dX (Xii

, Xij
))1≤i<j≤r and Yi1,...,ir

= 1
r!
∑

σ∈Sr
exp(i⟨Dσ(i1),...,σ(ir), ρθ⟩) is

symmetric, Sr the set of all permutations of r elements, Ar
n = n!

(n−r)! and Cr
n = n!

r!(n−r)! , since
nr−Ar

n is the number of r-uplets with non distinct indices. Notice that E[Yi1,...,ir
] = ϕX ,r(ρθ).

Consequently, the expectation of the U-statistic is bounded by:

E

∣∣∣∣∣∣ 1
Cr

n

∑
1≤i1<...<ir≤n

(ϕX ,r(ρθ) − Yi1,...,ir
)

∣∣∣∣∣∣ ≤

√√√√√V

 1
Cr

n

∑
1≤i1<...<ir≤n

Yi1,...,ir


≤
√
r

n
,

according to [27, Lemma A, Section 5.2.1], since V(Y1,...,r) ≤ 1.

We also get that:

2
+∞∑
r=2

αr1r≥n ≤ 2√
n

+∞∑
r=2

√
rαr.

Moreover, for every n ∈ N∗, the sequence (ur,n)r≥2 defined by ur,n = 2nr−Ar
n

nr satisfies:
ur,n − ur−1,n = 2(r−1)

n
Ar−1

n

nr−1 ≤ 2 r−1
n , with u2,n = 2

n , so that for every r ≥ 2, ur,n ≤
2
n

∑r−1
k=1 k = r(r−1)

n ≤ r2

n .

A.2.4 Proof of Example 7

Let ΞX = (X ,dX ,PX ) denote the uniform graph with |X | = V > 1 vertices.
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We get that:

E [dα,µ,ω(ΞX ,ΞXn)]

≥ α2

∫ +∞

0

∣∣∣∣∣∣E(X,X′)∼P⊗2
X

[exp(idX (X,X ′)ρ)] − 1
n2

∑
1≤ℓ,j≤n

exp (idX (Xℓ, Xj)ρ)

∣∣∣∣∣∣ dω(ρ)

= α2

(∫ +∞

0
|1 − exp(iρ)| dω(ρ)

)
E

∣∣∣∣∣∣ 1
V

− 1
n2

∑
1≤ℓ,j≤n

1Xℓ=Xj

∣∣∣∣∣∣
= α2

(∫ +∞

0
|1 − exp(iρ)| dω(ρ)

)
σV√
n
E

∣∣∣∣∣∣
√
n

σV

 1
n2

∑
1≤ℓ,j≤n

1Xℓ=Xj − 1
V

∣∣∣∣∣∣
≥ α2

(∫ +∞

0
|1 − exp(iρ)| dω(ρ)

)
σV√
n

n− 1
n

(
E

∣∣∣∣∣∣
√
n

σV

 1
C2

n

∑
1≤ℓ<j≤n

1Xℓ=Xj
− 1
V

∣∣∣∣∣∣
−

∣∣∣∣∣
√
n

σV

1
n(n− 1)

n∑
ℓ=1

(
1 − 1

V

)∣∣∣∣∣ )
According to the central limit theorem for U-statistics [20], see also [27, Theorem A, Section
5.5], for σV = 2

√
1
V

(
1 − 1

V

)
, it follows that for some absolute constant C > 0:

lim inf
n→+∞

E

∣∣∣∣∣∣
√
n

σV

 1
C2

n

∑
1≤ℓ<j≤n

1Xℓ=Xj
− 1
V

∣∣∣∣∣∣ ≥ C,

and
∣∣∣√

n
σV

1
n2

∑n
ℓ=1
(
1 − 1

V

)∣∣∣ = O
(√

V√
n

)
, so that,

lim inf
n→+∞

√
n

σV
E [dα,µ,ω(ΞX ,ΞXn)] ≥ Cα2

∫ +∞

0
|1 − exp(iρ)| dω(ρ).

B Additional numerical experiments

This section is complementary to Section 3.1.
We focus on the permutation procedure, that consists, given a permutation σ ∈ Sn+m of

the pooled sample (Z1, . . . , Zn+m) = (X1, . . . , Xn, Y1, . . . , Ym), to consider two new samples
X b

n = (Zσ(1), . . . , Zσ(n)) and Y b
m = (Zσ(n+1), . . . , Zσ(n+m)). More precisely, we proceed as

follows:
1. Calculate Tn,m,obs = d(Xn,Ym) from the original samples Xn and Ym.
2. Generate B permutation samples X b

n and Y b
m from Xn ∪ Ym.

3. Calculate T b
n,m = d(X b

n ,Y
b

m) for each permutation samples X b
n and Y b

m, b ∈ {1, . . . , B}.

4. Approximate the p-value of the test by p̂ = Card{b∈{1,...,B}, T b
n,m≥Tn,m,obs}

B .
The power of the test with level α ∈ {0.05, 0.1} is estimated by P̂α = Card{m∈{1,...,M}, p̂m≤α}

M ,
after M = 100 independent replications of the experiment.
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p2 sample size dboot,2 dboot,5 d̃boot,2 d̃boot,3 dshp ddtm,0.05 ddtm,0.5 ddtm,1

10 0.11 0.05 0.05 0.18 0.12 0.00 0.10 0.10
1.4 20 0.13 0.12 0.07 0.13 0.08 0.00 0.09 0.08

50 0.39 0.44 0.04 0.11 0.23 0.10 0.07 0.16
10 0.11 0.08 0.09 0.08 0.07 0.00 0.11 0.06

1.45 20 0.07 0.07 0.07 0.02 0.04 0.00 0.05 0.06
50 0.11 0.18 0.04 0.06 0.09 0.07 0.10 0.08
10 0.07 0.08 0.04 0.06 0.05 0.00 0.06 0.03

1.5 20 0.07 0.02 0.06 0.07 0.05 0.00 0.06 0.03
50 0.05 0.05 0.07 0.04 0.03 0.05 0.05 0.05
10 0.05 0.05 0.09 0.04 0.05 0.00 0.06 0.02

1.55 20 0.09 0.09 0.05 0.07 0.04 0.00 0.06 0.05
50 0.08 0.13 0.04 0.09 0.05 0.05 0.02 0.04
10 0.08 0.06 0.04 0.05 0.04 0.00 0.05 0.05

1.6 20 0.11 0.14 0.05 0.03 0.06 0.00 0.04 0.05
50 0.25 0.39 0.07 0.07 0.25 0.10 0.06 0.16

Table 7 lp-balls, α = 0.05

p2 sample size dboot,2 dboot,5 d̃boot,2 d̃boot,3 dshp ddtm,0.05 ddtm,0.5 ddtm,1

10 0.18 0.27 0.07 0.1 0.20 0.00 0.17 0.16
1.4 20 0.23 0.20 0.12 0.21 0.13 0.00 0.11 0.12

50 0.47 0.63 0.09 0.15 0.33 0.13 0.16 0.22
10 0.12 0.14 0.11 0.12 0.13 0.00 0.15 0.12

1.45 20 0.14 0.13 0.11 0.06 0.20 0.00 0.14 0.13
50 0.17 0.28 0.12 0.13 0.20 0.12 0.13 0.15
10 0.11 0.10 0.14 0.14 0.08 0.00 0.12 0.11

1.5 20 0.10 0.06 0.1 0.13 0.08 0.00 0.11 0.04
50 0.14 0.13 0.1 0.11 0.06 0.09 0.08 0.09
10 0.08 0.11 0.09 0.13 0.15 0.00 0.11 0.09

1.55 20 0.15 0.19 0.12 0.14 0.11 0.00 0.09 0.14
50 0.12 0.18 0.09 0.1 0.12 0.09 0.04 0.07
10 0.15 0.13 0.08 0.11 0.08 0.00 0.09 0.12

1.6 20 0.15 0.25 0.09 0.1 0.09 0.00 0.12 0.07
50 0.39 0.53 0.14 0.13 0.37 0.18 0.15 0.25

Table 8 lp-balls, α = 0.1
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κ2 sample size dboot,2 dboot,5 d̃boot,2 d̃boot,3 dshp ddtm,0.05 ddtm,0.5 ddtm,1

10 0.19 0.22 0.16 0.19 0.21 0.00 0.17 0.21
1.0 20 0.32 0.28 0.31 0.32 0.32 0.00 0.30 0.34

50 0.63 0.66 0.41 0.56 0.68 0.3 0.64 0.67
10 0.09 0.10 0.05 0.06 0.12 0.00 0.10 0.11

1.5 20 0.09 0.06 0.09 0.09 0.09 0.00 0.06 0.09
50 0.20 0.16 0.16 0.12 0.21 0.09 0.20 0.21
10 0.05 0.08 0.07 0.07 0.06 0.00 0.05 0.06

2.0 20 0.06 0.04 0.05 0.05 0.08 0.00 0.08 0.08
50 0.17 0.14 0.1 0.08 0.15 0.08 0.14 0.14
10 0.07 0.07 0.05 0.07 0.08 0.00 0.08 0.09

2.5 20 0.11 0.13 0.12 0.11 0.13 0.00 0.14 0.13
50 0.14 0.13 0.09 0.14 0.15 0.04 0.14 0.15
10 0.13 0.11 0.14 0.12 0.13 0.00 0.15 0.13

3.0 20 0.20 0.20 0.15 0.17 0.23 0.00 0.18 0.24
50 0.35 0.35 0.24 0.29 0.39 0.09 0.34 0.37

Table 9 von Mises distributions, α = 0.05

κ2 sample size dboot,2 dboot,5 d̃boot,2 d̃boot,3 dshp ddtm,0.05 ddtm,0.5 ddtm,1

10 0.25 0.26 0.27 0.27 0.26 0.00 0.25 0.26
1.0 20 0.43 0.44 0.38 0.44 0.40 0.00 0.42 0.42

50 0.74 0.80 0.54 0.62 0.81 0.45 0.78 0.83
10 0.16 0.15 0.12 0.13 0.17 0.00 0.17 0.16

1.5 20 0.13 0.11 0.15 0.13 0.12 0.00 0.13 0.12
50 0.29 0.26 0.21 0.19 0.32 0.15 0.28 0.30
10 0.11 0.13 0.11 0.11 0.11 0.00 0.07 0.11

2.0 20 0.12 0.13 0.13 0.08 0.11 0.00 0.12 0.10
50 0.22 0.27 0.12 0.14 0.22 0.22 0.2 0.23
10 0.12 0.13 0.12 0.1 0.13 0.00 0.17 0.14

2.5 20 0.15 0.17 0.18 0.22 0.17 0.00 0.17 0.17
50 0.21 0.23 0.14 0.21 0.24 0.12 0.27 0.24
10 0.19 0.19 0.22 0.23 0.20 0.00 0.2 0.2

3.0 20 0.31 0.31 0.27 0.22 0.31 0.00 0.25 0.34
50 0.48 0.43 0.33 0.38 0.54 0.19 0.46 0.52

Table 10 von Mises distributions, α = 0.1


	1 Introduction
	2 A new metric for metric measure spaces based on Gromov's mm spaces reconstruction theorem
	2.1 On the Gromov's mm spaces reconstruction theorem
	2.1.1 The theorem
	2.1.2 Proof of the theorem

	2.2 A new metric based on the distributions of pairwise distance matrices
	2.2.1 Definition of the metric
	2.2.2 Stability properties of the new metric
	2.2.3 Computational considerations


	3 Testing problems for mm spaces
	3.1 Two-sample testing
	3.2 Goodness-of-fit tests

	4 Learning for metric measure spaces
	4.1 Digits classification
	4.2 Application to shape detection

	5 Conclusion and Perspectives
	A Proofs
	A.1 Proof of Gromov's mm spaces reconstruction theorem
	A.1.1 Lemma 8 and its proof
	A.1.2 Lemma 9 and its proof
	A.1.3 Lemma 10 and its proof
	A.1.4 Lemma 11 and its proof
	A.1.5 Lemma 12 and its proof
	A.1.6 Lemma 13 and its proof
	A.1.7 Lemma 14 and its proof
	A.1.8 Lemma 15 and its proof

	A.2 Proof of results from Section 2.2
	A.2.1 Proof of Proposition 3
	A.2.2 Proof of Proposition 4
	A.2.3 Proof of Proposition 6
	A.2.4 Proof of Example 7


	B Additional numerical experiments

