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TOPICS IN ROBUST STATISTICAL LEARNING ∗

Claire Brécheteau1, Edouard Genetay2, Timothee Mathieu3 and Adrien
Saumard4

Abstract. Some recent contributions to robust inference are presented. Firstly, the classical problem
of robust M-estimation of a location parameter is revisited using an optimal transport approach - with
specifically designed Wasserstein-type distances - that reduces robustness to a continuity property.
Secondly, a procedure of estimation of the distance function to a compact set is described, using union
of balls. This methodology originates in the field of topological inference and offers as a byproduct a
robust clustering method. Thirdly, a robust Lloyd-type algorithm for clustering is constructed, using a
bootstrap variant of the median-of-means strategy. This algorithm comes with a robust initialization.

Résumé. Quelques contributions récentes à l’inférence robuste sont présentées. Premièrement, le
problème classique de la M-estimation robuste d’un paramètre de localisation est revisité en utilisant
une approche de transport optimal, avec des distances de type Wasserstein spécifiquement conçues,
qui réduit la robustesse à une propriété de continuité. La deuxième contribution décrit une procédure
d’estimation de la fonction de distance à un ensemble compact, en utilisant une union de boules. Cette
méthodologie trouve son origine dans le domaine de l’inférence topologique et offre comme sous-produit
une méthode de clustering robuste. Enfin, un algorithme robuste de type Lloyd pour le clustering
est présenté, en utilisant une variante bootstrap de la stratégie ”median-of-means”. Cet algorithme
s’accompagné notamment d’une initialisation robuste.

Introduction

This article presents some recent studies on the topic of robust statistical learning. The results were presented
at the session Robust Statistical Learning of the Journées MAS 2016, organized by Adrien Saumard. The three
sections of the article are based on the talks given by Claire Brécheteau, Edouard Genetay and Timothée
Mathieu. A fourth talk was given by Jules Dépersin, but it will be only briefly mentioned in this introduction.
Adrien Saumard has written the introduction and coordinated the present article.

After the seminal work of Catoni [10] on sub-Gaussian estimation of the mean and variance, robust estimation
has recently seen a resurgence of theoretical interest [29]. On the practical side, robustness is a property
robustness is a property more sought after than ever, since the data scientist often faces massive and complex
datasets that may contain a variety of outliers. Designing efficent robust procedures that allow to get rid of
most of the usual, time consuming, preprocessing of data thus became an attractive direction of research in the
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machine learning community. This led to several polynomial time robust learning algorithms [18], the research
being still very active in this area.

Before introducing the different sections of this article, let us first describe in a few lines the presentation
of Jules Dépersin, which is based on his preprint written in collaboration with Guillaume Lecué [16]. Median-
of-means (MOM) versions of the Stahel-Donoho outlyingness (SDO) and median absolute deviation (MAD)
functions are studied, aiming at constructing estimators that are robust to contaminated or heavy-tailed data.
Thanks to the almost isometric properties of the MOM versions of SDO and MAD, the first non-asymptotic
bounds of the “Stahel-Donoho median” are given. This estimator allows to give bounds in the “prediction
norm” and not only in the quadratic norm. It is also shown that the MOM version of MAD can be used to
construct an estimator of the covariance matrix under a single assumption of finite second moment or of a
scaling parameter if a second moment does not exist.

In the first section of this article, Timothée Mathieu presents the results obtained during his PhD thesis [33],
pertaining to robustness properties of M-estimators of location parameters. Hampel’s continuity approach
to robustness is revisited using specifically designed Wasserstein-type distance and new stability results for
M-estimators are obtained.

Claire Brécheteau has written the second section, that deals with robust estimation of the distance function
to a compact set, a theme arising from topological inference and having applications in robust clustering. The
method is based on a carefully chosen union of balls or ellispsoids recovering data points, a detailed algorithm
is provided and rates of convergence are obtained. The approach is detailed in [4, 6], where the second article
is written in collaboration with Clément Levrard.

The last section is written by Edouard Genetay. It presents the methodology and some of the results
and experiments obtained in [7], an article written in collaboration with Camille Brunet-Saumard and Adrien
Saumard. A robust quantization algorithm is proposed, using in parallell Lloyd iterations on blocks of data that
are generated according to a bootstrap sampling process. This algorithm comes with a robust initialization. A
theoretical guarantee in terms of a probabilistic breakdown point is presented and some experimental results
for the initialization show evidence of robustness to the presence of a small enough proportion of outliers.

1. Robust study of consistent M-estimators via an optimal transport
distance

1.1. Location estimators and corrupted distributions

We study geometric M-estimators computed as minimizers of an empirical loss: let X1, . . . , Xn be an i.i.d
sample in a Hilbert space H and define

T (P̂n) ∈ arg min
θ∈H

1

n

n∑
i=1

ρ(‖Xi − θ‖) (1)

where ρ is some convex loss function (convex, even, positive and with ρ(0) = 0) and P̂n is the empirical
distribution of X1, . . . , Xn. The goal is to estimate some location parameter of the law P that spawned the
data. Typically we want to estimate the mean. One of our purposes is to study the effect of the choice of ρ on

the robustness of T (P̂n). Our second purpose is to define and use a family of distances between distributions
using the theory of optimal transport. These distances between distributions are well adapted to working with
robust estimators of the mean.

We talk of robustness because we deal with a dataset that is not ideal, instead the data may be corrupted
by some anomalous data called outliers (one can think of outliers as “data [...] which do not fit the pattern
suggested by the majority of the data” [22]) and the inliers (points that are not outliers) may come from a
heavy-tailed distribution.

Let us define a model of corruption that can be used to represent such a corrupted dataset.
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Definition 1.1 (Huber’s contamination model). Let ε ∈ [0, 1/2) be the corruption proportion, let P be a
probability distribution with at least two finite moments and H an arbitrary probability distribution. We
consider X1, . . . , Xn drawn i.i.d. from (1− ε)P + εH.
P is called the law of “inliers” and H the law of “outliers”.

Said differently, in Huber’s contamination model, we draw the data from P the inlier distribution with
probability (1 − ε) and otherwise we draw according to the outlier distribution. This models a naturally-
occuring error that happens with small probability and is independent of the inliers. We will consider other
corruption neighborhoods in the sequel but Huber’s contamination model will play the role of benchmark.

1.2. M-estimators and robustness as a continuity

M-estimators have traditionally been studied in two contexts, the parametric context and the robustness
context. In a parametric context, M-estimators are dictated by the model and ρ is fixed to the negative log-
likelihood. The associated M-estimator is efficient at the hypothesized model but it can be highly sensitive to
a small proportion of outlier data. On the other hand, in the robustness context, ρ is supposed to be Lipshitz
and the associated M-estimator is then not sensitive to a small portion of outliers but it is not clear what is
the most efficient M-estimator in a given context. The choice of the optimal loss function ρ for a given problem
is hard in general and except for some simple specific neighborhoods of parametric model. Indeed, in Huber
contamination model with a fixed (and known) inlier probability P , a very ingenious analysis by Huber [23]
gives us a minimax M-estimator, but for more general neighborhoods and when the model is not parametric,
we don’t know which ρ is better. The goal of this article is to give some pointers on how to choose ρ for more
general models than Huber’s contamination model.

Figure 1. Illustration of robustness as a continuity of a functional T in dimension 1 for
Kolmogorov distance

The definition of robustness we use here is related to Hampel’s definition of robustness in [20]. Let T (P )

be the asymptotic value of T (P̂n) when n goes to infinity, if there is a small change in the probability then it
should not cause a large change in the value of T (P ). And if this is the case, T (P ) will be said to be robust.
More formally, let d be a distance between probabilities (Hampel used Levy, Prokhorov or Kolmogorov distance
for example) then T is robust at P if we have

‖T (P )− T (Q)‖ −−−−−−→
d(P,Q)→0

0.

This is a continuity property for the functional T and robustness theory shows that this type of robust property

of T implies robustness properties for the associated M-estimator T (P̂n), see [21, 24]. Continuity is linked to
the notion of neighborhood and after defining robustness as a continuity, it is natural to define the notion of
corrupted neighborhood. An ε-corruption neighborhood of P is defined as all the distributions Q such that
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d(P,Q) ≤ ε where d is some distance between distributions. For instance if d = TV is the total variation
distance, then Huber’s contamination model of P is included in the ε-corrupted neighborhood of P because
TV ((1−ε)P+εH, P ) ≤ ε for any H. On the other hand, there is no distance d for which Huber’s contamination
neighborhood is equal to the corruption neighborhood for d.

To study the outlier-resistance properties of T (P̂n), let us define ψ = ρ′ (when it exists) so that than T (P̂n)
may be defined alternatively by

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(‖Xi − T (P̂n)‖) = 0.

We will see that the properties of T (P̂n) are easy to state using properties of ψ. ψ is supposed to be non-
decreasing but contrary to a lot of robust statistics articles, we don’t suppose that ψ is bounded and instead
we will see that different M-estimators constructed with unbounded ψ function will verify a weaker definition
of robustness. For example,

• If ψ(x) = x, we get T (P̂n) = 1
n

∑n
i=1Xi,

• If ψ(x) = 1, then T (P̂n) is the empirical geometric median.

The empirical median can be seen as the most robust estimator in some sense (see [24, Section 4.2]) but it is
not very efficient to estimate the mean. We will use other ψ functions to compute M-estimators that will be
more robust than the empirical mean and more efficient than the empirical median to estimate the mean. Some
examples of trade-off between the mean and the median are obtain for ψ function such as

Huber’s score function: Let β > 0. For all x ≥ 0, let

ψH(x) = x1{x ≤ β}+ β 1{x > β}. (2)

In dimension 1, the M-estimator constructed from this score function is called Huber’s estimator [23].
Catoni’s score function: Let β > 0. For all x ≥ 0, let

ψC(x) = β log

(
1 +

x

β
+

1

2

(
x

β

)2
)
. (3)

The associated M-estimator is one of the estimators considered by Catoni in [11]. We call the resulting
M-estimator Catoni’s estimator.

Polynomial score function: Let p ∈ N∗, β > 0. For all x ≥ 0, let

ψP (x) =
x

1 +
(
x
β

)1−1/p
. (4)

We call Polynomial estimator the M-estimator obtained using this score function.

1.3. A family of Wasserstein distances adapted to robust statistics

An important tool of independent interest that we use here is a family of Wasserstein-type robust distances
defined by

Wψ(P,Q) = sup
h�ψ

{∫
h(x)dP (x)−

∫
h(x)dQ(x)

}
,

where h � ψ if and only if for any x, y ∈ H, h(x) − h(y) ≤ ψ(‖x − y‖). Two special cases of Wψ are the
total variation distance (for ψ(x) = sign(x) with ψ(0) = 0) and the Wasserstein-1 distance (for ψ(x) = x).
The distance Wψ can also be efficiently computed using for instance techniques from [35]. From the theory of
optimal transport we can prove the following theorem.
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Theorem 1.2. Suppose that ψ is increasing on R+, concave, ψ(0) = 0 and ψ is not constant equal to 0. Then,
Wψ metrizes the weak convergence in Pψ = {P : EP [ψ(‖X‖)] < ∞}. In other words, if (Pk)k∈N is a sequence
of probability measures in Pψ and P ∈ P, then the following statements are equivalent:

Pk
law−−−−→
k→∞

P and Wψ(Pk, P ) −−−−→
k→∞

0.

In particular, from Glivenko-Cantelli’s theorem, Wψ(P̂n, P ) −−−−→
n→∞

0. To illustrate the difference between Wψ

and the Wasserstein-1 distance, let us consider the transport problem of Figure 2. In this pair of distribution,
clearly the red distribution contains some outliers. We represent in Figure 3 the optimal transport map for the
Wasserstein-1 distance and the optimal transport map for Wψ distance where ψ is Huber’s score function for
β = 1. There is a lot less disruption due to outliers in the transport map with Wψ than in the transport map
with Wasserstein-1 distance.

Figure 2. Corrupted sources distributions in an optimal transport problem.

A theoretical guarantee linked to the illustration in Figures 2 and 3 is the following stability result for Wψ.

Theorem 1.3. Suppose that ψ is increasing, concave, ψ(0) = 0 and ψ is not constant equal to 0. Then for
H : [0, 1]→ Pψ if

tEH(t)[ψ(‖X‖)] −−−→
t→0

0

then,

Wψ ((1− t)P + tH(t), P ) −−−→
t→0

0.

Theorem 1.3 gives the condition that an outlier distribution H must verify in order to have (1− t)P + tH(t)
that converges to P for Wψ. This is a property of stability of the Wψ neighborhoods which justifies, in our
opinion, the use ofWψ in robust statistics and which shows that for some score function ψ, Wψ neighborhoods are
more general than Huber’s contamination neighborhoods. A consequence of Theorem 1.3 is that any estimator
that is continuous with respect to Wψ will show some robustness properties, we make that clear in the next
section.

1.4. Application to the robustness of M-estimators

Wasserstein-type distances are better suited than Kolmogorov or total-variation distances for studying of
empirical distribution in a robust context and we show this through consistency results in the corrupted setting.



6 ESAIM: PROCEEDINGS AND SURVEYS

Figure 3. Transport map for Wasserstein-1 distance and for Wψ distance.

One of the reason why Wasserstein distances are better suited for empirical work than total variation distance
is that the total variation do not take the ambient distance into account: for any x 6= y, we have TV (δx, δy) = 1
whereas Wψ(δx, δy) = ψ(‖x − y‖) where δx denotes the dirac mass in x. Hence Wψ will be better suited for
working with empirical densities. We also consider unbounded score functions ψ. Unbounded score functions
have been studied extensively in parametric setting (see [36]) and more recently using concentration inequalities
in the non-parametric setting [11, 12, 32]. An important first result is that the functional T constructed from
some score function ψ is continuous in Pψ with respect to the distance Wψ.

An application of Theorem 1.3 linked with the fact that T is continuous with respect to Wψ gives us that if
X ′1, . . . , X

′
n are i.i.d data with law P and X1, . . . , Xn is a copy of X ′1, . . . , X

′
n except for one point that has been

contaminated and has value Mn, i.e. Xi = X ′i for all i 6= i0 and Xi0 = Mn 6= X ′i0 . If ψ(‖Mn‖)/n −−−−→
n→∞

0, then

lim
n→∞

T

(
1

n

n∑
i=1

δXi

)
= lim
n→∞

T

(
1

n

n∑
i=1

δX′i

)
.

This result shows that if we have mild assumptions on the outlier (for instance if ψ is logarithmic at infinity,
Mn must be o(en)) then the M-estimator ignores the outlier asymptotically. To show this result, we prove an
extension of Hampel’s Theorem [24, Section 2.6] to the case of unbounded score function ψ using heavily the
properties of the family of distribution Wψ.

2. Dataset approximation with unions of ellipsoids and clustering

Let P be a probability distribution supported on a compact subset K of Rd, equipped with the Euclidean
norm ‖ · ‖. Let X = {X1, X2, . . . , Xn} be an i.i.d n-sample from a noisy version Q of P . In this section, we
introduce methods to build a family of k balls or ellipsoids to represent the data X. These methods aim at
recovering the compact set K, or more precisely, the distance function dK : x 7→ infy∈K ‖x− y‖ to this compact
set. Our estimators of dK may be used to cluster the data X, accordingly to their intrinsic shape. Therefore,
they are robust alternatives to spectral clustering methods [38] or to Topological Mode Analysis Tool (ToMATo
algorithm) [14].
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The construction of the balls and ellipsoids is based on a risk minimisation task. The centers of the balls
c1, c2, . . . , ck ∈ Rd and, for the directions of the ellipsoids, the covariance matrices Σ1,Σ2, . . . ,Σd ∈ Covd are
both obtained by minimising some k-means - type empirical risk [28]

Rn : (t,X) ∈ (Rd × Covd)
k × Rd×n 7→ 1

n

n∑
i=1

γ(t, Xi),

based on the criterion

γ : (t = (t1, t2, . . . , tk), x) ∈ (Rd × Covd)
k × Rd 7→ min

l∈[[1,k]]
δ(tl, x). (5)

Here, δ(tl, x) defines a divergence between a pair tl = (cl,Σl) ∈ Rd × Covd and a point x ∈ Rd, and Covd
denotes the set of symmetric positive semi-definite real d× d-matrices. Replacing δ with the squared Euclidean
distance in γ leads to the k-means criterion [28]. The estimators of dK that we introduce in this section are of

the form
√
γ(t̂, ·), with t̂, a minimiser of the empirical risk Rn. The compact set K may be approximated with

sublevel sets of γ(t̂, ·), that is, with unions of k balls or k ellipsoids. The performance of our distance estimators
is assessed through the L1(P )-distance between the squared estimator γ(t̂, ·) and d2

K. We derive non-parametric
rates of convergence.

From the criterion γ(t̂, ·), we derive two types of clustering methods for X. A first one is based on the space
decomposition induced by the criterion, when k is small and corresponds to the expected number of clusters.
A second one is based on a hierarchical clustering-type procedure based on the sublevel sets of γ(t̂, ·). For this
scheme, k may be much larger than the number of clusters, since it represents the number of balls or ellipsoids
used to fit the data possibly sampled from a complex geometric structure.

The methods are proven robust. The estimator γ(t̂, ·) is robust to additive noise. The continuous version
of the estimator, γ(t∗Q, ·), based on the noisy version Q of P , with t∗Q, a minimiser of the continuous criterion
t 7→ Qγ(t, ·), is robust to Wasserstein noise and to additive noise. By robust, we mean that additive noise does
not substantially modifies the L1(P )- distance of the squared distance estimator to d2

K. Moreover, by trimming
our criteria [15], our methods can be used as procedures for outliers detection. Clustering procedures, based
on the trimmed criterion with a Bregman divergence δ, do have theoretical guaranties in terms of breakdown
point, [5].

The work exposed in this section has been published in two papers [4, 6]. In the following four parts, we
define our divergence δ for the approximation of K with balls, for the approximation of K with ellipsoids, we
give the algorithm for our trimmed distance estimators and finally we explain how to make use of these distance
estimators for data clustering.

2.1. Approximating data with a family of k balls

As aforementionned, the k-means criterion is obtained by taking δ : (c, x) ∈ Rd × Rd 7→ ‖c − x‖2, in the
expression of γ, in (5). This criterion lacks of robustness with respect to outliers and additive noise in the data.
Indeed, a single point t ∈ t, far from K, makes the L∞-distance to dK large, since ‖dt−dK‖∞ ≥ infx∈K ‖x− t‖.
Therefore, we introduce a smoothed version of this criterion using a parameter q ∈ [[1, n]], that corresponds to
a number of nearest-neighbours. Equivalently, we set h = q

n ∈ (0, 1], the proportion of neighbours to consider
in order to smooth the distance estimator.

For c ∈ Rd, consider X̃(c, h) the subset of X composed with the q = nh nearest neighbours of c in X, for the
Euclidean norm. Set mc,h = 1

q

∑
x̃∈X̃(c,h) x̃, the mean of these neighbours, and vc,h = 1

q

∑
x̃∈X̃(c,h) ‖mc,h − x̃‖2
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their inertia or variance. We consider the divergence δX,h, defined by :

δX,h : (c, x) ∈ Rd × Rd 7→ ‖x−mc,h‖2 + vc,h =
1

q

∑
x̃∈X̃(c,h)

‖x− x̃‖2.

The function x 7→
√
δX,h(x, x) =

√
infc∈Rd δX,h(c, x) coincides with the empirical distance-to-measure function

dX,h [13], a robust approximation of the distance function dK, widely used in the robust geometric data analysis
area.

The continuous analogue of δX,h is defined for the probability distribution P by δP,h : (c, x) 7→ P̃c,h‖x− ·‖2.
It corresponds to the expectation of the squared Euclidean distance of x to a random variable X of distribution
P̃c,h, the restriction of P to the Euclidean ball BP,c,h centered at c with P -mass P (BP,c,h) = h. The distance

to the measure P is defined by dP,h : x ∈ Rd 7→
√
δP,h(x, x) =

√
infc∈Rd δP,h(c, x) [13].

The k-power distance-to-measure function is defined by

dP,h,k : x 7→
√
γP,h(t∗, x) :=

√
min
l∈[[1,k]]

δP,h(t∗l , x), (6)

with
t∗ ∈ arg min

t
{PγP,h(t, ·)} . (7)

The empirical k-power distance-to-measure function is defined by

dX,h,k : x 7→
√
γX,h(t̂, x) :=

√
min
l∈[[1,k]]

δX,h(t̂l, x), (8)

with

t̂ ∈ arg min
t

{
1

n

n∑
i=1

γX,h(t, Xi)

}
. (9)

Note that for every x ∈ Rd, dX,h,k(x) ≥ dX,h(x) and dP,h,k(x) ≥ dP,h(x).
In order to assess the performance of our estimator dX,h,k of dK, we compare dX,h,k to the distance-to-measure

function dP,h, which is proven to be close to dK for the infinity norm, under regularity assumptions [13].
The performance is measured in terms of the L1(P )-norm between the squares of the two distance functions.

To this aim, we make use of the following bias-variance decomposition :

P
∣∣d2

X,h,k(·)− d2
P,h(·)

∣∣ ≤ P ∣∣d2
X,h,k(·)− d2

Q,h,k(·)
∣∣+ P

∣∣d2
Q,h,k(·)− d2

P,h(·)
∣∣ .

The bias term depends on the regularity of the distribution P and of the compact set K.

Theorem 2.1 (Bias term [6, Corollary 16, Proposition 17]). If supp(P ) = K ⊂ B(0,K) for some K > 0, and
if Q has a finite first moment, Q‖.‖ <∞, then,

P
∣∣d2
Q,h,k(·)− d2

P,h(·)
∣∣ ≤ 3‖d2

Q,h − d2
P,h‖∞,B(0,K) + P

(
d2
P,h,k(.)− d2

P,h(.)
)

+ 4W1(P,Q) sup
c∈Rd

‖mP,c,h‖, (10)

with mP,c,h, the expectation of P̃c,h, the restriction of P to the ball centered at c with P -mass h.
Moreover, if K is a compact d′-dimensional C2-submanifold, if P has a density 0 < fmin ≤ f ≤ fmax with

respect to the volume measure on K and if it satisfies, for every x ∈ K and r > 0, the following inequality

P (B(x, r)) ≥ cfminrd
′
∧ 1,
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then, for k ≥ cN,fmin and h ≤ CN,fmin , we have

0 ≤ P (d2
P,h,k − d2

P,h) ≤ CN,fmin,fmax
k−

2
d′ , (11)

where cN,fmin
, CN,fmin

and CN,fmin,fmax
are three constants, depending on N , fmin and fmax.

Note that the first term ‖d2
Q,h − d2

P,h‖∞,B(0,K) in the right hand side of (10) may be upper bounded by

the L2-Wasserstein distance W2(P,Q), up to a constant term, due to the stability of the distance-to-measure
function with respect to the L2-Wasserstein distance [13].

A bound for ‖dQ,h,k − dK‖∞ is available in [6, Proposition 18]. This bound is stated in terms of the Wasser-
stein distance between P and Q, and of the smoothing parameter h. In particular, for h large enough, the
distance estimator may be close to dK, unlike the distance estimator based on k-means.

Parametric rates of convergence are obtained for the variance term, under additive noise assumption.

Theorem 2.2 (Variance term [6, Theorem 19]). Let P be supported on K ⊂ B(0,K). Assume that we observe
X = {X1, . . . , Xn} such that Xi = Yi+Zi, where the Yi’s and Zi’s are all independent, Yi is sampled from P and

Zi is sub-Gaussian with variance σ2, with σ ≤ K. That is, ‖Zi‖ ≤ t with probability larger than 1−exp
(
− t2

2σ2

)
,

for every t ≥ σ.
Let p > 0, with probability larger than 1− 10n−p, we have

∣∣P (d2
Qn,h,k(.)− d2

Q,h,k(.)
)∣∣ ≤ C√k log(k)d

K2((p+ 1) log(n))
3
2

h
√
n

+ C
Kσ√
h
. (12)

Consequently, under the additive noise assumption, optimising in k the sum of the two upper bounds from
(10), (11) and (12) consists in optimising in k the quantity

C
√
k log(k)K2((p+ 1) log(n))

3
2

h
√
n

+ CN,fmin,fmax
k−

2
d′ .

Therefore, an optimal choice would consist in taking k of order n
d′

d′+4 , where d′ is the intrinsic dimensionality
of K. Therefore, there is no need of taking k of order n, the sample size, to have the best distance to K
approximation, from a noisy sample.

2.2. Approximating data with a family of k ellipsoids

If K is embedded into a d′-dimensional submanifold with d′ < d, the ambiant dimension, summarizing data
with ellipsoids instead of balls may be more appropriate: notably, to have a sparser descriptor of the data, that
is, a descriptor with a smaller number of ellipsoids.

For h ∈ (0, 1], the function c 7→ δP,h(c, c) = P̃c,h‖c− ·‖2 actually corresponds, up to some absolute constants,
to the negative h-trimmed log-likelihood [37] for the normal isotropic model (N (c, Id))c∈Rd . Indeed, the ball
BP,c,h defined in the previous section is the upper-level set of the normal isotropic distribution N (c, Id), with
P -mass h, where Id stands for the identity matrix on Rd.

By enriching the normal distributions model with covariance matrices Σ in Covd, we extend the function δP,h
to the whole space Rd×Covd×Rd. It is defined by δP,h : (t = (c,Σ), x) 7→ P̃(c,Σ),h

(
‖x− ·‖2Σ−1 + log(det(Σ))

)
. In

particular, t = (c,Σ) 7→ δP,h(t, c) coincides with the h-trimmed negative loglikelihood, for the normal anisotropic

model (N (c,Σ))(c,Σ)∈Rd×Covd
. Note that P̃(c,Σ),h is the restriction of P to the upper-level set of N (c,Σ) of P -

mass h. This is an ellipsoid centered at c, directed by the matrix Σ. Here, for x ∈ Rd, ‖x‖Σ−1 =
√
xTΣ−1x

denotes the Σ-Mahalanobis norm of x.
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Let X̃((c,Σ), h) be the subset of X composed with the q ‖ · ‖Σ−1-nearest neighbours of c in X. The discrete

version of the criterion is defined from X̃((c,Σ), h), by :

δX,h : ((c,Σ), x) ∈ Rd×Covd×Rd 7→ ‖x−m(c,Σ),h‖2+v(c,Σ),h+log(det(Σ)) =
1

q

∑
x̃∈X̃((c,Σ),h)

‖x−x̃‖2Σ−1+log(det(Σ)),

with m(c,Σ),h = 1
q

∑
x̃∈X̃((c,Σ),h) x̃, and v(c,Σ),h = 1

q

∑
x̃∈X̃((c,Σ),h) ‖m(c,Σ),h − x̃‖2Σ−1 .

The k-power likelihood-to-measure function and the empirical k-power likelihood-to-measure function are
estimators of dK defined from δX,h and δP,h, by the equations (6), (7), (8) and (9).

2.3. Algorithms

An adaptation of the Lloyd’s algorithm for k-means is possible and boils down to compute a local minimiser
of the empirical risk Rn, for both the empirical k-power distance-to-measure and the empirical loglikelihood-to-
measure. An adaptation of the trimmed k-means algorithm [15] is also possible.

For a given α ∈ [0, 1], the α-trimmed empirical risk is defined by :

R̃n,α : (t,X) ∈ (Rd × Covd)
k × Rd×n 7→ inf

X̃⊂X,|X̃|=bαnc
Rn(t, X̃).

Here, |X̃| denotes the cardinality of X̃ and bαnc denotes the floor of αn. Minimising the trimmed risk R̃α
consists in selecting the subset of bαnc points of X for which the optimal risk inftR(t, X̃) is minimal. To a
certain extent, it corresponds to the subset of the data that can be best approximated with a family of k points,
according to our given criterion γ.

For conciseness, we describe the algorithm to compute a local minimiser of the trimmed criterion, for the
k-power empirical likelihood-to-measure. The local minimiser for the k-power distance-to-measure function can
be derived from this algorithm by replacing all covariance matrices with Id.

Algorithm 2.3. Local minimisation of the trimmed risk R̃n,α= a
n

1: Input X an n-sample from P ; q, k, a ∈ [[1, n]].
2: Sample c1, c2,. . . ck from X without replacement. Set Σi = Id for i in [[1, k]].
3: while the ti = (ci,Σi)s vary do
4: for i in [[1, k]] do
5: Set C(ti) = {}
6: end for
7: for j in [[1, n]] do
8: Add Xj to the cell C(ti) satisfying

δX,h(ti, Xj) ≤ δX,h(tl, Xj)∀l 6= i.
9: Set t(X) = (c(X),Σ(X)) = (ci,Σi).

10: end for
11: Sort (γ(X) = δX,h(t(X), X)) for X ∈ X
12: Remove the n− a points X associated with the n− a largest values of γ(X), from their cell C(t(X))
13: for i in [[1, k]] do
14: ci = 1

|C(ti)|
∑
X∈C(ti)X ; Σi = Σ(ci,Σi, C(ti))

15: ti = (ci,Σi)
16: end for
17: end while
18: Output (t1, t2, . . . , tk).

For every l,m ∈ [[1, d]] and (c,Σ) ∈ Rd × Covd, Σ(c,Σ, C)l,m = 1
|C|
∑
X∈C

1
|X̃((c,Σ),h)|

∑
X̃∈X̃((c,Σ),h)(X(l) −

X̃(l))(X(m) − X̃(m)), with X(m) and X̃(m) the m-th coordinates of X and X̃.
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2.4. Data clustering

Just as k-means, our criterion γX,h(t̂, ·) may be used to cluster the data X. For this purpose, a point x ∈ X
satisfying γX,h(t̂, x) = δX,h(t̂l, x) for l ∈ [[1, k]] is given the label l. Moreover, the n − a points x ∈ X with

largest value γX,h(t̂, x) are removed from the sample, since they are considered as outliers. An application of
the clustering method on a mixture of anisotropic 2-dimensional normal distributions, with outliers uniformly
sampled on a subset of R2, is given in Figure 4 (left). We take k = 3 since there are 3 clusters.

Figure 4. Data clustering with a straight use of the criterion γX,h(t̂, ·) (left), with a hierarchical

type clustering based on γX,h(t̂, ·) (right)

For data sampled on a non-connected submanifold, we may use our distance estimator dX,h,k whose sublevel

sets are unions of ellipsoids. Starting from t̂ = (t̂1, t̂2, . . . , t̂k), we may construct a graph filtration (a family of
non-decreasing graphs Gτ , indexed with a parameter τ ∈ R). In the graph Gτ , vertices correspond to ellipsoids
δX,h(t̂l, ·)−1((−∞, τ ]) for l ∈ [[1, k]] and an array between two vertices is in Gτ when the two ellipsoids have
a non-empty common intersection. From this graph filtration, it is possible to apply a hierarchical clustering
with the dendrogram derived from the graph filtration, or a persistence-based clustering [4] as in [14]. Both
procedures are similar. Data points are then clustered according to the label of their γX,h(t̂, ·)-associated center.

As for the previous procedure, the n− a γX,h(t̂, ·)-furthest points to their center are removed.

2.5. Conclusion and Opening

The criteria defined here are useful to cluster noisy data which exhibit an intrinsic geometric shape. Theo-
retical results for the k-power likelihood-to-measure function are in progress. In order to be compatible with
the dimensionality of the data, we also intend to propose a procedure based on a slope heuristic, by considering
a subset of the family of covariance matrices, with intrinsic dimensionality smaller than the ambiant dimen-
sion. Moreover, the k-power distance-to-measure function’s criterion derives from a data-dependent Bregman
divergence. Following [5], we expect theoretical guarranties for the trimming procedures.

3. Construction of a robust clustering algorithm via bootstrap MOM

3.1. Introduction

Classical data mining procedures such as K-means, or EM algorithms for instance, are based on non-robust
criteria (least-squares, maximum likelihood) and are thus sensitive to the presence of outliers. A time consuming
data pre-processing is thus in general needed before applying such techniques to datasets. To lighten the pre-
processing step, robustness is a desirable property for data mining algorithms. Existing approaches for robust
K-means consist for instance on considering Huber’s losses (K-median) or trimming (trimmed K-means) [3,19]
to name but a few. Trimming comes with practical algorithms and is so far the most theoretically grounded
approach, with theoretical garantees such as a breakdown point control. But median-of-means (MOM) strategy
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has been the object of recent intensive research [17,25–27,29–31,34]. More specifically, Klochkov et al. [39] stud-
ied theoretically the MOM strategy applied to K-means on a heavy-tailed data. However, the latter contribution
does not give any pratical guidelines.

Although the MOM strategy comes with strong theoretical robust guarantees, it has some flaws from the
clustering perspective. Indeed, it consists in making complementary blocks and this is not well suited for clus-
tering because the more blocks, the less chances that all blocks contain one instance of each cluster. We propose
therefore to use a variant of the MOM that we call “bootstrap median-of-means” (bMOM) in which blocks are
picked randomly with replacement from the dataset. This procedure can also be viewed as “subragging” [9].

We will describe in section 3.2 an iterative procedure, derived from K-means. In 3.3 we introduce a robust
initialisation, using parallel K-means++ initialisations. In section 3.4 we present a theoretical result in terms
of a probabilistic breakdown point and finally, we show some experimental results in Section 3.5. This short
article highlights some parts of our work available in [7] and in its supplementary material [8].

3.2. K-bMOM algorithm

In clustering one often wants to get centroids and one evaluates the achieved performances of these centroids
with a criterion. It this case, the bMOM strategy can be applied to a non-robust procedure as follows:

• (bootstrap part) make some blocks with datapoints picked uniformly at random with replacement from
the original dataset.

• use your non robust procedure on each block
• compute your performance criterion on each block
• (MOM part) select the centroids of the block with the median performance

We apply this strategy to each iteration of Lloyd’s algorithm to get the pseudo-code in the algorithm of Figure 5.

3.3. A robust initialisation: K-bMOM-kmeans++

In clustering the initialisation is very important. Indeed iterative procedures are often based on non-convex
optimisation schemes that are very sensitive to the initial state. To this end, we provide a robust initialisation
procedure in the algorithm of Figure 6. It is based on the same routine as in previous section applied to the
non-robust K-means++ initialisation [2]:

• (bootstrap part) make some blocks with datapoints picked uniformly at random with replacement from
the original dataset

• compute kmeans++ on each block
• compute the performance criterion of the centroids obtained on each block
• (MOM part) select the centroids of the block with the median performance as initialisation centroids.

3.4. Theoretical garantees

As claimed in the introduction, we proved that K-bMOM has robust properties in terms of breakdown point
as well as in terms of excess risk bounds. We focus in this summary on the result about the breakdown point.
For further information, refer to our article [7] and supplementary [8] Sections 3.1 and 3.2. The definition of
the probabilistic breakdown point we consider is the following.

Definition 3.1. The probabilistic breakdown point of a randomized estimator T̂ω (ω accounts for randomiza-
tion) and given the sample un1 is

p
(
T̂ω, un1 , (i1, ..., im)

)
= P

({
ω : sup

e1,...,em

∣∣∣T̂ω (s1, ..., sn)
∣∣∣ <∞}) . (13)

where the sample (s1, ..., sn) is obtained by replacing the m data points ui1 , ..., uim , for some fixed indices
(i1, ..., im), by the arbitrary values e1, ..., em.
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Input: xn1 ,K,B, nB with (nB > K) and (c1,0, . . . , cK,0)
Let (c1,0, . . . , cK,0) be the K initial centroids and called reference centroids.
Set t = 1.
While t ≤ tmax:

(1) Create B blocks (y
(b)
1,t , ..., y

(b)
nB ,t) for b ∈ {1, ..., B}, according to a random sampling process that

at each step selects an observation uniformly over the data xn1 and independently from the other
steps.

(2) For all b ∈ {1, . . . , B}:
(a) Assign each data point in the block of index b to its closest reference centroid.

(b) Set n
(b)
k,t the number of data points in the block b belonging to the cluster k.

(c) if n
(b)
k,t > 1,∀k ∈ {1, . . . ,K}:

(i) for all k ∈ {1, . . . ,K}:
c
(b)
k,t ← 1/n

(b)
k,t

∑nB

l=1 y
(b)
l,t 1{y(b)

l,t ∈ C
(b)
k,t}.

R
(b)
t ← 1

nB

∑K
k=1

∑nB

l=1

∥∥∥y(b)
l,t − c

(b)
k,t

∥∥∥2

1{y(b)
l,t ∈ C

(b)
k,t}.

(d) otherwise
(i) Skip the block.

(e) Get the median block bmed such that R
(bmed)
t = med

{
R

(b)
t : b ∈ {1, ..., B}

}
and(

ĉ
(bmed)
1,t , . . . , ĉ

(bmed)
K,t

)
the centroids assigned to the median block bmed at iteration t be-

coming the reference centroids.
(f) t← t+ 1.

return: c̄(bmed) =
(
c̄
(bmed)
1 , . . . , c̄

(bmed)
K

)
such that c̄

(bmed)
k = 1

10

∑tmax

t=tmax−10 ĉ
(bmed)
k,t for all k ∈ {1, ...,K}

and P(c̄(bmed)).

Figure 5. Algorithm of the iteration phase structure

Input: xn1 ,K,B, nB with (nB > K)

(1) Create B blocks (y
(b)
1,0, ..., y

(b)
nB ,0

) for b ∈ {1, ..., B}, according to a random sampling process that
at each step selects an observation uniformly over the data xn1 and independently from the other
steps.

(2) For all b ∈ {1, . . . , B}:
(a) Proceed to a K-means++ initialization based on the sample (y

(b)
1,0, ..., y

(b)
nB ,0

). This gives the

centroids (c
(b)
1,++, ..., c

(b)
K,++).

(b) Compute the empirical risk R
(b)
++ of the block b:

R
(b)
++ ← 1

nB

∑K
k=1

∑nB

l=1

∥∥∥y(b)
l − c

(b)
k,++

∥∥∥2

1{y(b)
l ∈ C

(b)
k }.

(3) Select the block bmed having the median empirical risk.

Return
(
ĉ
(bmed)
1,++ , . . . , ĉ

(bmed)
K,++

)
the centroids of the median block bmed.

Figure 6. Algorithm of the initialization strategy
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Under a configuration of the data said “well-clusterisable” we can state a breakdown point for K-bMOM.
This configuration is defined as follows.

Definition 3.2. A dataset xn1 is said to be in a well-clusterizable configuration, with compactness parameter r
and separation parameter R satisfying R > 2r > 0, if the points xn1 lie in a union of K disjoint balls B(ak, r), k =
1, ...,K, of radius r with centers ak separated from each other by at least a distance R: mink 6=k′ ||ak−ak′ || ≥ R.
Moreover, each ball B(ak, r) is assumed to contain exactly one cluster.

In this context, the randomized estimator K-bMOM outputs some centroids c̄ω as defined in algorithm 5.

Theorem 3.3. Let ω 7→ c̄ω be the K-bMOM randomized output computed iteratively using at each step B blocks
of size nB. Assume that the block length nB and the proportion of outliers m/n are such that (1−m/n)

nB > 1/2.
Assume furthermore that the regular data points xn1 are in a well-clusterizable situation, with compactness and
separation parameters denoted respectively r and R, satisfying R2 > 16nBr

2. Finally, assume that at the
beginning of the last 10 iterations, the algorithm has identified the correct partition of the regular data, meaning
that one cluster is associated with one centroid. It holds then that p(c̄, xn1 , (i1, ..., im)) ≥ max {p1 − p2, 0} with

p1 =

(
1−

K∑
k=1

(
1− nrk

n

)nB
)10B

(14)

and

p2 = 10 exp

(
−2B

((
1− m

n

)nB

− 1

2

)2
)
, (15)

where the quantity nrk in display (14) stands for the number of regular data (not outliers) belonging to cluster k
in the corrupted version of original dataset xn1 .

This theorem states that if when the data are in a so called “well-clusterisable” configuration then K-bMOM
is able to robustly provide K centroids if, among other things, the proportion of outliers m/n ranges from 0 to⌊
n
(
1− 1/21/nB

)⌋
/n ≈ 0.69/nB . For detailed comments about this bound and the behaviour of p1 and p2, plus

some advices for practitioners, read Section 3.2 of our article [7].

3.5. Performances of the robust initialisation K-bMOM-kmeans++

We carried out some experiments to measure the benefits of our approach to robust initialisation. In this short
article, we introduce only one of them, and refer to [7] for more experiments. We compare the performance
of six different initialisations in three different contexts of outliers. Among the six methods four are well
known: random, k-means++ [2], its variant k-medians++ and ROBIN [1]. In addition we compare “k-bmom-
kmeans++” and “k-bmom-kmedians++”, two methods obtained when one applies bMOM strategy introduced
in Section 3.3 to kmeans++ and to kmedians++ respectively. The three types of outliers are said to be
punctual (T1), oriented (T2) and clustered (T3). Punctual outliers are located randomly uniformly around
the clusters to decrease the contrast between the clusters. Oriented outliers are originally data points whose
coordinates get multiplied by a given factor. Finally the third type corresponds to “clustered” outliers because
they are all located in the same region of the space, see Figure 7. The obtained results after 1000 repetitions
are shown in Table 1. This table shows overall that our methodology applied on kmeans++ and kmedians++
achieves better performances. In particular, in the case T1, all methods perform well. The performances of the
usual methods drop however when other types of outliers are introduced (outlier types T2 and T3).

3.6. Conclusion

In this short article, we introduced some important elements of our article [7] and its supplementary ma-
terial [8]. We explain what we call the “MOM (or bMOM) strategy” and how it can be used in practice. In
particular, we introduced the procedures called “k-bMOM” (when applied to the iterations of kmeans) and
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Figure 7. Illustrations of simulated regular data (blue points) generated according to a Gauss-
ian Mixture Model with isotropic variance and different types of outliers (black crosses).

type of outlier initialization RMSE distortion accuracy

random 1.643 (0.370) 4.307 (1.700) 0.538 (0.069)

K-medians++ 0.934 (0.389) 1.887 (1.656) 0.833 (0.137)

T1 isolated K-means++ 0.979 (0.405) 1.752 (1.668) 0.857 (0.137)

ROBIN 1.351 (1.122) 2.674 (2.273) 0.847 (0.196)

K-bMOM-km++ 0.702 (0.534) 1.421 (1.363) 0.894 (0.136)

K-bMOM-kmed 0.727 (0.412) 1.491 (1.355) 0.871 (0.134)

random 4.155 (5.653) 4.652 (1.699) 0.708 (0.046)

K-medians++ 39.53 (39.09) 7.936 (5.574) 0.412 (0.189)

T2 oriented K-means++ 23.38 (33.49) 3.458 (2.339) 0.770 (0.146)

& isolated ROBIN 15.95 (50.41) 7.646 (89.79) 0.635 (0.346)

K-bMOM-km++ 6.552 (9.142) 1.828 (1.491) 0.874 (0.085)

K-bMOM-kmed 7.420 (8.819) 1.972 (1.505) 0.849 (0.081)

random 1.505 (0.360) 4.157 (1.597) 0.544 (0.066)

K-medians++ 0.842 (0.358) 1.872 (1.667) 0.810 (0.152)

T3 cluster of K-means++ 0.880 (0.360) 2.472 (1.755) 0.756 (0.158)

outliers ROBIN 1.256 (0.817) 3.847 (4.067) 0.694 (0.330)

K-bMOM-km++ 0.637 (0.429) 1.630 (1.523) 0.851 (0.153)

K-bMOM-kmed 0.697 (0.421) 1.718 (1.522) 0.800 (0.152)

Table 1. Aggregated performances according to the typology of outliers for different strategies
of initialization.

called “k-bmom-kmeans++” (when applied to the initialisation strategy kmeans++). Then we stated a theo-
retical result about a probabilistic breakdown point of the K-bMOM procedure, showing that if the data are
in a so-called “well-clusterisable” configuration then k-bMOM is able to provide robust centroids while the
proportion of outliers can range from 0 to

⌊
n
(
1− 1/21/nB

)⌋
/n ≈ 0.69/nB . Finally, we have shown that the

proposed initialisation “k-bmom-kmeans++” matches the definition of a “robust initialisation” because it keeps
good performances even if outliers induce a strong bias/perturbation, while other methods start to break down.
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[19] L. A. Garćıa-Escudero, A. Gordaliza, C. Matrán, and A. Mayo-Iscar. A review of robust clustering methods. Adv. Data Anal.

Classif., 4(2-3):89–109, 2010.
[20] F. R. Hampel. A general qualitative definition of robustness. Ann. Math. Statist., 42(6):1887–1896, 12 1971.

[21] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics: The Approach Based on Influence
Functions. Wiley Series in Probability and Statistics. Wiley, 1st edition edition, January 1986. missing.

[22] Frank Hampel. Some thoughts about classification. In Classification, clustering, and data analysis (Cracow, 2002), Stud.

Classification Data Anal. Knowledge Organ., pages 5–26. Springer, Berlin, 2002.
[23] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35(1):73–101, 03 1964.

[24] P. J. Huber and E. M. Ronchetti. Robust statistics; 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ,

2009.
[25] Y. Klochkov, A. Kroshnin, and N. Zhivotovskiy. Robust k-means clustering for distributions with two moments. Ann. Statist.,

49(4):2206–2230, 2021.
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